[1] | Agrawal CM, Ray RB (2001) Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J Biomed Mater Res 55: 141-150. doi:10.1002/1097-4636(200105)55:2. PubMed: 11255165.
|
[2] | Lalwani G, Henslee AM, Farshid B, Lin L, Kasper FK et al. (2013) Two-Dimensional Nanostructure-Reinforced Biodegradable Polymeric Nanocomposites for Bone Tissue Engineering. Biomacromolecules 14: 900-909. doi:10.1021/bm301995s. PubMed: 23405887.
|
[3] | Langstaff S, Sayer M, Smith TJN, Pugh SM (2001) Resorbable bioceramics based on stabilized calcium phosphates. Part II: evaluation of biological response. Biomaterials 22: 135-150. doi:10.1016/S0142-9612(00)00139-3. PubMed: 11101158.
|
[4] | Wang XH, Ma JB, Wang YN, He BL (2002) Bone repair in radii and tibias of rabbits with phosphorylated chitosan reinforced calcium phosphate cements. Biomaterials 23: 4167-4176. doi:10.1016/S0142-9612(02)00153-9. PubMed: 12194519.
|
[5] | Munting E, Mirtchi AA, Lemaitre J (1993) Bone repair of defects filled with a phosphocalcic hydraulic cement: An in vivo study. J Mater Sci Mater Med 4: 337-344. doi:10.1007/BF00122290.
|
[6] | Brooks AE, Stricker SM, Joshi SB, Kamerzell TJ, Middaugh CR et al. (2008) Properties of Synthetic Spider Silk Fibers Based on Argiope aurantia MaSp2. Biomacromolecules 9: 1506-1510. doi:10.1021/bm701124p. PubMed: 18457450.
|
[7] | Lim DW, Nettles DL, Setton LA, Chilkoti A (2007) In Situ Cross-Linking of Elastin-like Polypeptide Block Copolymers for Tissue Repair. Biomacromolecules 9: 222-230. PubMed: 18163573.
|
[8] | Kang T-Y, Hong JM, Kim BJ, Cha HJ, Cho D-W (2013) Enhanced endothelialization for developing artificial vascular networks with a natural vessel mimicking the luminal surface in scaffolds. Acta Biomaterialia 9: 4716-4725. doi:10.1016/j.actbio.2012.08.042. PubMed: 22947325.
|
[9] | Wang G, Zheng L, Zhao H, Miao J, Sun C et al. (2011) Construction of A Fluorescent Nanostructured Chitosan-Hydroxyapatite Scaffold by Nanocrystallon Induced Biomimetic Mineralization and Its Cell Biocompatibility. ACS. Applied Materials & Interfaces 3: 1692-1701.
|
[10] | Cancedda R, Cedola A, Giuliani A, Komlev V, Lagomarsino S et al. (2007) Bulk and interface investigations of scaffolds and tissue-engineered bones by X-ray microtomography and X-ray microdiffraction. Biomaterials 28: 2505-2524. doi:10.1016/j.biomaterials.2007.01.022. PubMed: 17292959.
|
[11] | Liu X, Smith LA, Hu J, Ma PX (2009) Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering. Biomaterials 30: 2252-2258. doi:10.1016/j.biomaterials.2008.12.068. PubMed: 19152974.
|
[12] | Phipps MC, Clem WC, Catledge SA, Xu Y, Hennessy KM et al. (2011) Mesenchymal Stem Cell Responses to Bone-Mimetic Electrospun Matrices Composed of Polycaprolactone, Collagen I and Nanoparticulate Hydroxyapatite. PLOS ONE 6: e16813. doi:10.1371/journal.pone.0016813. PubMed: 21346817.
|
[13] | Kim TG, Shin H, Lim DW (2012) Biomimetic Scaffolds for Tissue Engineering. Adv Funct Mater 22: 2446-2468. doi:10.1002/adfm.201103083.
|
[14] | Van Vlierberghe S, Dubruel P, Schacht E (2011) Biopolymer-Based Hydrogels As Scaffolds for Tissue Engineering Applications: A Review. Biomacromolecules 12: 1387-1408. doi:10.1021/bm200083n. PubMed: 21388145.
|
[15] | Aviv-Gavriel M, Garti N, Füredi-Milhofer H (2012) Preparation of a Partially Calcified Gelatin Membrane as a Model for a Soft-to-Hard Tissue Interface. Langmuir 29: 683-689. PubMed: 23231089.
|
[16] | Chirila TV, Zainuddin , Hill DJT, Whittaker AK, Kemp A (2007) Effect of phosphate functional groups on the calcification capacity of acrylic hydrogels. Acta Biomaterialia 3: 95-102. doi:10.1016/j.actbio.2006.07.011. PubMed: 17071146.
|
[17] | Vallés Lluch A, Ferrer GG, Pradas MM (2009) Surface modification of P(EMA-co-HEA)/SiO2 nanohybrids for faster hydroxyapatite deposition in simulated body fluid? Colloids Surf B Biointerfaces 70: 218-225. doi:10.1016/j.colsurfb.2008.12.027. PubMed: 19185471.
|
[18] | He Q, Chen H, Huang L, Dong J, Guo D et al. (2012) Porous Surface Modified Bioactive Bone Cement for Enhanced Bone Bonding. PLOS ONE 7: e42525. doi:10.1371/journal.pone.0042525. PubMed: 22905143.
|
[19] | Tanase CE, Popa MI, Verestiuc L (2012) Biomimetic chitosan-calcium phosphate composites with potential applications as bone substitutes: Preparation and characterization. J Biomed Mater Res B Appl Biomater 100 B: 700-708. PubMed: 22121073.
|
[20] | Yu J, Li K, Zheng X, He D, Ye X et al. (2013) In Vitro and In Vivo Evaluation of Zinc-Modified Ca–Si-Based Ceramic Coating for Bone Implants. PLOS ONE 8: e57564. doi:10.1371/journal.pone.0057564. PubMed: 23483914.
|
[21] | Jayakumar R, Chennazhi KP, Srinivasan S, Nair SV, Furuike T et al. (2011) Chitin Scaffolds in Tissue Engineering. Int J Mol Sci 12: 1876-1887. doi:10.3390/ijms12031876. PubMed: 21673928.
|
[22] | Wan ACA, Khor E, Hastings GW (1998) Preparation of a chitin-apatite composite by in situ precipitation onto porous chitin scaffolds. J Biomed Mater Res 41: 541-548. doi:10.1002/(SICI)1097-4636(19980915)41:4. PubMed: 9697026.
|
[23] | Wan AGA, Khor E, Wong JM, Hastings GW (1996) Promotion of calcification on carboxymethylchitin discs. Biomaterials 17: 1529-1534. doi:10.1016/0142-9612(96)89778-X. PubMed: 8853124.
|
[24] | Andrew Wan, Khor E, Hastings GW (1998) The influence of anionic chitin derivatives on calcium phosphate crystallization. Biomaterials 19: 1309-1316. doi:10.1016/S0142-9612(98)00046-5. PubMed: 9720895.
|
[25] | Tokura S, Tamura H (2001) O-carboxymethyl-chitin concentration in granulocytes during bone repair. Biomacromolecules 2: 417-421. doi:10.1021/bm0001345. PubMed: 11749201.
|
[26] | Bleek K, Taubert A New developments in polymer-controlled, bioinspired calcium phosphate mineralization from aqueous solution. Acta Biomaterialia.
|
[27] | Gérentes P, Vachoud L, Doury J, Domard A (2002) Study of a chitin-based gel as injectable material in periodontal surgery. Biomaterials 23: 1295-1302. doi:10.1016/S0142-9612(01)00247-2. PubMed: 11804285.
|
[28] | Uda H, Sugawara Y, Nakasu M (2006) Experimental studies on hydroxyapatite powder-carboxymethyl chitin composite: Injectable material for bone augmentation. J Plast Reconstr Aesthet Surg 59: 188-196. doi:10.1016/j.bjps.2004.11.022. PubMed: 16703865.
|
[29] | Da H, Jia S-J, Meng G-L, Cheng J-H, Zhou W et al. (2013) The Impact of Compact Layer in Biphasic Scaffold on Osteochondral Tissue Engineering. PLOS ONE 8: e54838. doi:10.1371/journal.pone.0054838. PubMed: 23382984.
|
[30] | Mahony O, Tsigkou O, Ionescu C, Minelli C, Ling L et al. (2010) Silica-Gelatin Hybrids with Tailorable Degradation and Mechanical Properties for Tissue Regeneration. Adv Funct Mater 20: 3835-3845. doi:10.1002/adfm.201000838.
|
[31] | Betre H, Setton LA, Meyer DE, Chilkoti A (2002) Characterization of a Genetically Engineered Elastin-like Polypeptide for Cartilaginous Tissue Repair. Biomacromolecules 3: 910-916. doi:10.1021/bm0255037. PubMed: 12217035.
|
[32] | Matsumura G, Nitta N, Matsuda S, Sakamoto Y, Isayama N et al. (2012) Long-Term Results of Cell-Free Biodegradable Scaffolds for In Situ Tissue-Engineering Vasculature: In a Canine Inferior Vena Cava Model. PLOS ONE 7: e35760. doi:10.1371/journal.pone.0035760. PubMed: 22532873.
|
[33] | Serrano MC, Chung EJ, Ameer GA (2010) Advances and Applications of Biodegradable Elastomers in Regenerative Medicine. Adv Funct Mater 20: 192-208. doi:10.1002/adfm.200901040.
|
[34] | Sagar N, Soni VP, Bellare JR (2012) Influence of carboxymethyl chitin on stability and biocompatibility of 3D nanohydroxyapatite/gelatin/carboxymethyl chitin composite for bone tissue engineering. J Biomed Mater Res B Appl Biomater 100 B: 624-636. PubMed: 22323281.
|
[35] | Sharan K, Mishra JS, Swarnkar G, Siddiqui JA, Khan K et al. (2011) A novel quercetin analogue from a medicinal plant promotes peak bone mass achievement and bone healing after injury and exerts an anabolic effect on osteoporotic bone: the role of aryl hydrocarbon receptor as a mediator of osteogenic action. J Bone Miner Res 26: 2096-2111. doi:10.1002/jbmr.434. PubMed: 21638315.
|
[36] | Li M, Ke HZ, Qi H, Healy DR, Li Y et al. (2003) A novel, non-prostanoid EP2 receptor-selective prostaglandin E2 agonist stimulates local bone formation and enhances fracture healing. J Bone Miner Res 18: 2033-2042. doi:10.1359/jbmr.2003.18.11.2033. PubMed: 14606517.
|
[37] | Sharma S, Patil DJ, Soni VP, Sarkate LB, Khandekar GS et al. (2009) Bone healing performance of electrophoretically deposited apatite-wollastonite/chitosan coating on titanium implants in rabbit tibiae. J Tissue Eng Regen Med 3: 501-511. doi:10.1002/term.186. PubMed: 19621346.
|
[38] | Street J, Winter D, Wang JH et al. (2000) Is human fracture hematoma inherently angiogenic? Clin Orthop Relat Res; Volumes 378: 224–237. doi:10.1097/00003086-200009000-00033. PubMed: 10986998.
|
[39] | Mizuno K, Mineo K, Tachibana T, Sumi M, Matsubara T et al. (1990) The osteogenetic potential of fracture haematoma. Subperiosteal and intramuscular transplantation of the haematoma. J Bone Joint Surg Br 72-B: 822-829.
|
[40] | Poon YF, Zhu YB, Shen JY, Chan-Park MB, Ng SC (2007) Cytocompatible Hydrogels Based on Photocrosslinkable Methacrylated O-Carboxymethylchitosan with Tunable Charge: Synthesis and Characterization. Adv Funct Mater 17: 2139-2150. doi:10.1002/adfm.200600420.
|
[41] | (1994)Bolander ME. Regulation of fracture repair and synthesis of matrix macromolecules. Brighton CT, Friedlander GE, Lane JM (eds), Bone Formation and Repair. Rosemont: . American Academy of Orthopaedic Surgeons , 117–141.
|
[42] | Lieberman JR, Daluiski A, Einhorn TA (2002) The Role of Growth Factors in the Repair of Bone Biology and Clinical Applications. J Bone Joint Surg 84: 1032-1044. PubMed: 12063342.
|
[43] | Schiller AL Bones and joints. In: E. RubinJL Farber, Pathology, pp. 1304-1393. . Philadelphia: J. B. Lippincott Publishing House Co. , 1988.
|
[44] | Davies JE (2007) Bone bonding at natural and biomaterial surfaces. Biomaterials 28: 5058-5067. doi:10.1016/j.biomaterials.2007.07.049. PubMed: 17697711.
|
[45] | Perren SM, Cordey J (1980) The concept of interfragmentary strain. In: HK Uhthoff, Current Concepts of Internal Fixation of Fractures; Springer p Berlin, pp. 63-77.
|
[46] | Rahn BA (2002) Bone healing: histologic and physiologic concepts. In: G. Sumner-Smith. Bone in Clinical Orthopaedics. 2nd ed. Stuttgart, Germany: Thieme Verlag. pp. 287-325.
|
[47] | Correia C, Bhumiratana S, Yan L-P, Oliveira AL, Gimble JM et al. (2012) Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells. Acta Biomaterialia 8: 2483-2492. doi:10.1016/j.actbio.2012.03.019. PubMed: 22421311.
|
[48] | Lu C, Marcucio R, Miclau T (2006) Assessing angiogenesis during fracture healing. Iowa Orthop J 26: 17-26. PubMed: 16789443.
|
[49] | Mandal BB, Kundu SC (2009) Non-mulberry silk gland fibroin protein 3-D scaffold for enhanced differentiation of human mesenchymal stem cells into osteocytes. Acta Biomaterialia 5: 2579-2590. doi:10.1016/j.actbio.2009.02.033. PubMed: 19345621.
|
[50] | Deng M, Kumbar SG, Nair LS, Weikel AL, Allcock HR et al. (2011) Biomimetic Structures: Biological Implications of Dipeptide-Substituted Polyphosphazene–Polyester Blend Nanofiber Matrices for Load-Bearing Bone Regeneration. Adv Funct Mater 21: 2641-2651. doi:10.1002/adfm.201100275.
|
[51] | Laurencin CT, Ambrosio AM, Borden MD, Cooper JA Jr. (1999) Tissue engineering: orthopedic applications. Annu Rev Biomed Eng 1: 19-46. doi:10.1146/annurev.bioeng.1.1.19. PubMed: 11701481.
|
[52] | Marotti G (1993) A new theory of bone lamellation. Calcif Tissue Int 53: S47-S56. doi:10.1007/BF01673402. PubMed: 8275380.
|
[53] | Weiner S, Traub W (1992) Bone structure: from angstroms to microns. FASEB J 6: 879-885. PubMed: 1740237.
|
[54] | Mandal BB, Kundu SC (2009) Cell proliferation and migration in silk fibroin 3D scaffolds. Biomaterials 30: 2956-2965. doi:10.1016/j.biomaterials.2009.02.006. PubMed: 19249094.
|
[55] | Murphy CM, Haugh MG, O'Brien FJ (2010) The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 31: 461-466. doi:10.1016/j.biomaterials.2009.09.063. PubMed: 19819008.
|
[56] | Dahe GJ, Kadam SS, Sabale SS, Kadam DP, Sarkate LB et al. (2011) In Vivo Evaluation of the Biocompatibility of Surface Modified Hemodialysis Polysulfone Hollow Fibers in Rat. PLOS ONE 6: e25236. doi:10.1371/journal.pone.0025236. PubMed: 22046236.
|