全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

In-Vivo Efficacy of Compliant 3D Nano-Composite in Critical-Size Bone Defect Repair: a Six Month Preclinical Study in Rabbit

DOI: 10.1371/journal.pone.0077578

Full-Text   Cite this paper   Add to My Lib

Abstract:

Bone defects above critical size do not heal completely by itself and thus represent major clinical challenge to reconstructive surgery. Numerous bone substitutes have already been used to promote bone regeneration, however their use, particularly for critical-sized bone defects along with their long term in vivo safety and efficacy remains a concern. The present study was designed to obtain a complete healing of critical-size defect made in the proximal tibia of New Zealand White rabbit, using nano-hydroxyapatite/gelatin and chemically carboxymethylated chitin (n-HA/gel/CMC) scaffold construct. The bone-implant interfaces and defect site healing was evaluated for a period up to 25 weeks using radiography, micro-computed tomography, fluorescence labeling, and histology and compared with respective SHAM (empty contra lateral control). The viscoelastic porous scaffold construct allows easy surgical insertion and post-operatively facilitate oxygenation and angiogenesis. Radiography of defect treated with scaffold construct suggested expedited healing at defect edges and within the defect site, unlike confined healing at edges of the SHAM sites. The architecture indices analyzed by micro-computed tomography showed a significant increase in percentage of bone volume fraction, resulted in reconciled cortico-trabecular bone formation at n-HA/gel/CMC constructs treated site (15.2% to 52.7%) when compared with respective SHAM (10.2% to 31.8%). Histological examination and fluorescence labeling revealed that the uniformly interconnected porous surface of scaffold construct enhanced osteoblasts’ activity and mineralization. These preclinical data suggest that, n-HA/gel/CMC construct exhibit stimulation of bone's innate regenerative capacity, thus underscoring their use in guided bone regeneration.

References

[1]  Agrawal CM, Ray RB (2001) Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J Biomed Mater Res 55: 141-150. doi:10.1002/1097-4636(200105)55:2. PubMed: 11255165.
[2]  Lalwani G, Henslee AM, Farshid B, Lin L, Kasper FK et al. (2013) Two-Dimensional Nanostructure-Reinforced Biodegradable Polymeric Nanocomposites for Bone Tissue Engineering. Biomacromolecules 14: 900-909. doi:10.1021/bm301995s. PubMed: 23405887.
[3]  Langstaff S, Sayer M, Smith TJN, Pugh SM (2001) Resorbable bioceramics based on stabilized calcium phosphates. Part II: evaluation of biological response. Biomaterials 22: 135-150. doi:10.1016/S0142-9612(00)00139-3. PubMed: 11101158.
[4]  Wang XH, Ma JB, Wang YN, He BL (2002) Bone repair in radii and tibias of rabbits with phosphorylated chitosan reinforced calcium phosphate cements. Biomaterials 23: 4167-4176. doi:10.1016/S0142-9612(02)00153-9. PubMed: 12194519.
[5]  Munting E, Mirtchi AA, Lemaitre J (1993) Bone repair of defects filled with a phosphocalcic hydraulic cement: An in vivo study. J Mater Sci Mater Med 4: 337-344. doi:10.1007/BF00122290.
[6]  Brooks AE, Stricker SM, Joshi SB, Kamerzell TJ, Middaugh CR et al. (2008) Properties of Synthetic Spider Silk Fibers Based on Argiope aurantia MaSp2. Biomacromolecules 9: 1506-1510. doi:10.1021/bm701124p. PubMed: 18457450.
[7]  Lim DW, Nettles DL, Setton LA, Chilkoti A (2007) In Situ Cross-Linking of Elastin-like Polypeptide Block Copolymers for Tissue Repair. Biomacromolecules 9: 222-230. PubMed: 18163573.
[8]  Kang T-Y, Hong JM, Kim BJ, Cha HJ, Cho D-W (2013) Enhanced endothelialization for developing artificial vascular networks with a natural vessel mimicking the luminal surface in scaffolds. Acta Biomaterialia 9: 4716-4725. doi:10.1016/j.actbio.2012.08.042. PubMed: 22947325.
[9]  Wang G, Zheng L, Zhao H, Miao J, Sun C et al. (2011) Construction of A Fluorescent Nanostructured Chitosan-Hydroxyapatite Scaffold by Nanocrystallon Induced Biomimetic Mineralization and Its Cell Biocompatibility. ACS. Applied Materials & Interfaces 3: 1692-1701.
[10]  Cancedda R, Cedola A, Giuliani A, Komlev V, Lagomarsino S et al. (2007) Bulk and interface investigations of scaffolds and tissue-engineered bones by X-ray microtomography and X-ray microdiffraction. Biomaterials 28: 2505-2524. doi:10.1016/j.biomaterials.2007.01.022. PubMed: 17292959.
[11]  Liu X, Smith LA, Hu J, Ma PX (2009) Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering. Biomaterials 30: 2252-2258. doi:10.1016/j.biomaterials.2008.12.068. PubMed: 19152974.
[12]  Phipps MC, Clem WC, Catledge SA, Xu Y, Hennessy KM et al. (2011) Mesenchymal Stem Cell Responses to Bone-Mimetic Electrospun Matrices Composed of Polycaprolactone, Collagen I and Nanoparticulate Hydroxyapatite. PLOS ONE 6: e16813. doi:10.1371/journal.pone.0016813. PubMed: 21346817.
[13]  Kim TG, Shin H, Lim DW (2012) Biomimetic Scaffolds for Tissue Engineering. Adv Funct Mater 22: 2446-2468. doi:10.1002/adfm.201103083.
[14]  Van Vlierberghe S, Dubruel P, Schacht E (2011) Biopolymer-Based Hydrogels As Scaffolds for Tissue Engineering Applications: A Review. Biomacromolecules 12: 1387-1408. doi:10.1021/bm200083n. PubMed: 21388145.
[15]  Aviv-Gavriel M, Garti N, Füredi-Milhofer H (2012) Preparation of a Partially Calcified Gelatin Membrane as a Model for a Soft-to-Hard Tissue Interface. Langmuir 29: 683-689. PubMed: 23231089.
[16]  Chirila TV, Zainuddin , Hill DJT, Whittaker AK, Kemp A (2007) Effect of phosphate functional groups on the calcification capacity of acrylic hydrogels. Acta Biomaterialia 3: 95-102. doi:10.1016/j.actbio.2006.07.011. PubMed: 17071146.
[17]  Vallés Lluch A, Ferrer GG, Pradas MM (2009) Surface modification of P(EMA-co-HEA)/SiO2 nanohybrids for faster hydroxyapatite deposition in simulated body fluid? Colloids Surf B Biointerfaces 70: 218-225. doi:10.1016/j.colsurfb.2008.12.027. PubMed: 19185471.
[18]  He Q, Chen H, Huang L, Dong J, Guo D et al. (2012) Porous Surface Modified Bioactive Bone Cement for Enhanced Bone Bonding. PLOS ONE 7: e42525. doi:10.1371/journal.pone.0042525. PubMed: 22905143.
[19]  Tanase CE, Popa MI, Verestiuc L (2012) Biomimetic chitosan-calcium phosphate composites with potential applications as bone substitutes: Preparation and characterization. J Biomed Mater Res B Appl Biomater 100 B: 700-708. PubMed: 22121073.
[20]  Yu J, Li K, Zheng X, He D, Ye X et al. (2013) In Vitro and In Vivo Evaluation of Zinc-Modified Ca–Si-Based Ceramic Coating for Bone Implants. PLOS ONE 8: e57564. doi:10.1371/journal.pone.0057564. PubMed: 23483914.
[21]  Jayakumar R, Chennazhi KP, Srinivasan S, Nair SV, Furuike T et al. (2011) Chitin Scaffolds in Tissue Engineering. Int J Mol Sci 12: 1876-1887. doi:10.3390/ijms12031876. PubMed: 21673928.
[22]  Wan ACA, Khor E, Hastings GW (1998) Preparation of a chitin-apatite composite by in situ precipitation onto porous chitin scaffolds. J Biomed Mater Res 41: 541-548. doi:10.1002/(SICI)1097-4636(19980915)41:4. PubMed: 9697026.
[23]  Wan AGA, Khor E, Wong JM, Hastings GW (1996) Promotion of calcification on carboxymethylchitin discs. Biomaterials 17: 1529-1534. doi:10.1016/0142-9612(96)89778-X. PubMed: 8853124.
[24]  Andrew Wan, Khor E, Hastings GW (1998) The influence of anionic chitin derivatives on calcium phosphate crystallization. Biomaterials 19: 1309-1316. doi:10.1016/S0142-9612(98)00046-5. PubMed: 9720895.
[25]  Tokura S, Tamura H (2001) O-carboxymethyl-chitin concentration in granulocytes during bone repair. Biomacromolecules 2: 417-421. doi:10.1021/bm0001345. PubMed: 11749201.
[26]  Bleek K, Taubert A New developments in polymer-controlled, bioinspired calcium phosphate mineralization from aqueous solution. Acta Biomaterialia.
[27]  Gérentes P, Vachoud L, Doury J, Domard A (2002) Study of a chitin-based gel as injectable material in periodontal surgery. Biomaterials 23: 1295-1302. doi:10.1016/S0142-9612(01)00247-2. PubMed: 11804285.
[28]  Uda H, Sugawara Y, Nakasu M (2006) Experimental studies on hydroxyapatite powder-carboxymethyl chitin composite: Injectable material for bone augmentation. J Plast Reconstr Aesthet Surg 59: 188-196. doi:10.1016/j.bjps.2004.11.022. PubMed: 16703865.
[29]  Da H, Jia S-J, Meng G-L, Cheng J-H, Zhou W et al. (2013) The Impact of Compact Layer in Biphasic Scaffold on Osteochondral Tissue Engineering. PLOS ONE 8: e54838. doi:10.1371/journal.pone.0054838. PubMed: 23382984.
[30]  Mahony O, Tsigkou O, Ionescu C, Minelli C, Ling L et al. (2010) Silica-Gelatin Hybrids with Tailorable Degradation and Mechanical Properties for Tissue Regeneration. Adv Funct Mater 20: 3835-3845. doi:10.1002/adfm.201000838.
[31]  Betre H, Setton LA, Meyer DE, Chilkoti A (2002) Characterization of a Genetically Engineered Elastin-like Polypeptide for Cartilaginous Tissue Repair. Biomacromolecules 3: 910-916. doi:10.1021/bm0255037. PubMed: 12217035.
[32]  Matsumura G, Nitta N, Matsuda S, Sakamoto Y, Isayama N et al. (2012) Long-Term Results of Cell-Free Biodegradable Scaffolds for In Situ Tissue-Engineering Vasculature: In a Canine Inferior Vena Cava Model. PLOS ONE 7: e35760. doi:10.1371/journal.pone.0035760. PubMed: 22532873.
[33]  Serrano MC, Chung EJ, Ameer GA (2010) Advances and Applications of Biodegradable Elastomers in Regenerative Medicine. Adv Funct Mater 20: 192-208. doi:10.1002/adfm.200901040.
[34]  Sagar N, Soni VP, Bellare JR (2012) Influence of carboxymethyl chitin on stability and biocompatibility of 3D nanohydroxyapatite/gelatin/carboxymethyl chitin composite for bone tissue engineering. J Biomed Mater Res B Appl Biomater 100 B: 624-636. PubMed: 22323281.
[35]  Sharan K, Mishra JS, Swarnkar G, Siddiqui JA, Khan K et al. (2011) A novel quercetin analogue from a medicinal plant promotes peak bone mass achievement and bone healing after injury and exerts an anabolic effect on osteoporotic bone: the role of aryl hydrocarbon receptor as a mediator of osteogenic action. J Bone Miner Res 26: 2096-2111. doi:10.1002/jbmr.434. PubMed: 21638315.
[36]  Li M, Ke HZ, Qi H, Healy DR, Li Y et al. (2003) A novel, non-prostanoid EP2 receptor-selective prostaglandin E2 agonist stimulates local bone formation and enhances fracture healing. J Bone Miner Res 18: 2033-2042. doi:10.1359/jbmr.2003.18.11.2033. PubMed: 14606517.
[37]  Sharma S, Patil DJ, Soni VP, Sarkate LB, Khandekar GS et al. (2009) Bone healing performance of electrophoretically deposited apatite-wollastonite/chitosan coating on titanium implants in rabbit tibiae. J Tissue Eng Regen Med 3: 501-511. doi:10.1002/term.186. PubMed: 19621346.
[38]  Street J, Winter D, Wang JH et al. (2000) Is human fracture hematoma inherently angiogenic? Clin Orthop Relat Res; Volumes 378: 224–237. doi:10.1097/00003086-200009000-00033. PubMed: 10986998.
[39]  Mizuno K, Mineo K, Tachibana T, Sumi M, Matsubara T et al. (1990) The osteogenetic potential of fracture haematoma. Subperiosteal and intramuscular transplantation of the haematoma. J Bone Joint Surg Br 72-B: 822-829.
[40]  Poon YF, Zhu YB, Shen JY, Chan-Park MB, Ng SC (2007) Cytocompatible Hydrogels Based on Photocrosslinkable Methacrylated O-Carboxymethylchitosan with Tunable Charge: Synthesis and Characterization. Adv Funct Mater 17: 2139-2150. doi:10.1002/adfm.200600420.
[41]  (1994)Bolander ME. Regulation of fracture repair and synthesis of matrix macromolecules. Brighton CT, Friedlander GE, Lane JM (eds), Bone Formation and Repair. Rosemont: . American Academy of Orthopaedic Surgeons , 117–141.
[42]  Lieberman JR, Daluiski A, Einhorn TA (2002) The Role of Growth Factors in the Repair of Bone Biology and Clinical Applications. J Bone Joint Surg 84: 1032-1044. PubMed: 12063342.
[43]  Schiller AL Bones and joints. In: E. RubinJL Farber, Pathology, pp. 1304-1393. . Philadelphia: J. B. Lippincott Publishing House Co. , 1988.
[44]  Davies JE (2007) Bone bonding at natural and biomaterial surfaces. Biomaterials 28: 5058-5067. doi:10.1016/j.biomaterials.2007.07.049. PubMed: 17697711.
[45]  Perren SM, Cordey J (1980) The concept of interfragmentary strain. In: HK Uhthoff, Current Concepts of Internal Fixation of Fractures; Springer p Berlin, pp. 63-77.
[46]  Rahn BA (2002) Bone healing: histologic and physiologic concepts. In: G. Sumner-Smith. Bone in Clinical Orthopaedics. 2nd ed. Stuttgart, Germany: Thieme Verlag. pp. 287-325.
[47]  Correia C, Bhumiratana S, Yan L-P, Oliveira AL, Gimble JM et al. (2012) Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells. Acta Biomaterialia 8: 2483-2492. doi:10.1016/j.actbio.2012.03.019. PubMed: 22421311.
[48]  Lu C, Marcucio R, Miclau T (2006) Assessing angiogenesis during fracture healing. Iowa Orthop J 26: 17-26. PubMed: 16789443.
[49]  Mandal BB, Kundu SC (2009) Non-mulberry silk gland fibroin protein 3-D scaffold for enhanced differentiation of human mesenchymal stem cells into osteocytes. Acta Biomaterialia 5: 2579-2590. doi:10.1016/j.actbio.2009.02.033. PubMed: 19345621.
[50]  Deng M, Kumbar SG, Nair LS, Weikel AL, Allcock HR et al. (2011) Biomimetic Structures: Biological Implications of Dipeptide-Substituted Polyphosphazene–Polyester Blend Nanofiber Matrices for Load-Bearing Bone Regeneration. Adv Funct Mater 21: 2641-2651. doi:10.1002/adfm.201100275.
[51]  Laurencin CT, Ambrosio AM, Borden MD, Cooper JA Jr. (1999) Tissue engineering: orthopedic applications. Annu Rev Biomed Eng 1: 19-46. doi:10.1146/annurev.bioeng.1.1.19. PubMed: 11701481.
[52]  Marotti G (1993) A new theory of bone lamellation. Calcif Tissue Int 53: S47-S56. doi:10.1007/BF01673402. PubMed: 8275380.
[53]  Weiner S, Traub W (1992) Bone structure: from angstroms to microns. FASEB J 6: 879-885. PubMed: 1740237.
[54]  Mandal BB, Kundu SC (2009) Cell proliferation and migration in silk fibroin 3D scaffolds. Biomaterials 30: 2956-2965. doi:10.1016/j.biomaterials.2009.02.006. PubMed: 19249094.
[55]  Murphy CM, Haugh MG, O'Brien FJ (2010) The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 31: 461-466. doi:10.1016/j.biomaterials.2009.09.063. PubMed: 19819008.
[56]  Dahe GJ, Kadam SS, Sabale SS, Kadam DP, Sarkate LB et al. (2011) In Vivo Evaluation of the Biocompatibility of Surface Modified Hemodialysis Polysulfone Hollow Fibers in Rat. PLOS ONE 6: e25236. doi:10.1371/journal.pone.0025236. PubMed: 22046236.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133