全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Sensitive and Direct Detection of Receptor Binding Specificity of Highly Pathogenic Avian Influenza A Virus in Clinical Samples

DOI: 10.1371/journal.pone.0078125

Full-Text   Cite this paper   Add to My Lib

Abstract:

Influenza A virus (IAV) recognizes two types of N-acetylneuraminic acid (Neu5Ac) by galactose (Gal) linkages, Neu5Acα2,3Gal and Neu5Acα2,6Gal. Avian IAV preferentially binds to Neu5Acα2,3Gal linkage, while human IAV preferentially binds to Neu5Acα2,6Gal linkage, as a virus receptor. Shift in receptor binding specificity of avian IAV from Neu5Acα2,3Gal linkage to Neu5Acα2,6Gal linkage is generally believed to be a critical factor for its transmission ability among humans. Surveillance of this shift of highly pathogenic H5N1 avian IAV (HPAI) is thought to be a very important for prediction and prevention of a catastrophic pandemic of HPAI among humans. In this study, we demonstrated that receptor binding specificity of IAV bound to sialo-glycoconjugates was sensitively detected by quantifying the HA gene with real-time reverse-transcription-PCR. The new assay enabled direct detection of receptor binding specificity of HPAIs in chicken clinical samples including trachea and cloaca swabs in only less than 4 h.

References

[1]  Suzuki Y (2005) Sialobiology of influenza: molecular mechanism of host range variation of influenza viruses. Biol Pharm Bull 28: 399-408. doi:10.1248/bpb.28.399. PubMed: 15744059.
[2]  Shinya K, Ebina M, Yamada S, Ono M, Kasai N et al. (2006) Avian flu: influenza virus receptors in the human airway. Nature 440: 435-436. doi:10.1038/440435a. PubMed: 16554799.
[3]  Costa T, Chaves AJ, Valle R, Darji A, van Riel D et al. (2012) Distribution patterns of influenza virus receptors and viral attachment patterns in the respiratory and intestinal tracts of seven avian species. Vet Res 43: 28. doi:10.1186/1297-9716-43-28. PubMed: 22489675.
[4]  Imai M, Watanabe T, Hatta M, Das SC, Ozawa M et al. (2012) Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 486: 420-428. PubMed: 22722205.
[5]  Herfst S, Schrauwen EJ, Linster M, Chutinimitkul S, de Wit E et al. (2012) Airborne transmission of influenza A/H5N1 virus between ferrets. Science 336: 1534-1541. doi:10.1126/science.1213362. PubMed: 22723413.
[6]  Takahashi T, Nidom CA, Le MQ, Suzuki T, Kawaoka Y (2012) Amino acid determinants conferring stable sialidase activity at low pH for H5N1 influenza A virus neuramindase. FEBS Open Bios 2: 261-266. doi:10.1016/j.fob.2012.08.007.
[7]  Carroll SM, Higa HH, Paulson JC (1981) Different cell-surface receptor determinants of antigenically similar influenza virus hemagglutinins. J Biol Chem 256: 8357-8363. PubMed: 6167577.
[8]  Rogers GN, Paulson JC, Daniels RS, Skehel JJ, Wilson IA et al. (1983) Single amino acid substitutions in influenza haemagglutinin change receptor binding specificity. Nature 304: 76-78. doi:10.1038/304076a0. PubMed: 6191220.
[9]  Gambaryan AS, Matrosovich MN (1992) A solid-phase enzyme-linked assay for influenza virus receptor-binding activity. J Virol Methods 39: 111-123. doi:10.1016/0166-0934(92)90130-6. PubMed: 1430058.
[10]  Yamada S, Suzuki Y, Suzuki T, Le MQ, Nidom CA et al. (2006) Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors. Nature 444: 378-382. doi:10.1038/nature05264. PubMed: 17108965.
[11]  Takahashi T, Hashimoto A, Maruyama M, Ishida H, Kiso M et al. (2009) Identification of amino acid residues of influenza A virus H3 HA contributing to the recognition of molecular species of sialic acid. FEBS Lett 583: 3171-3174. doi:10.1016/j.febslet.2009.08.037. PubMed: 19720062.
[12]  Suzuki Y, Nakao T, Ito T, Watanabe N, Toda Y et al. (1992) Structural determination of gangliosides that bind to influenza A, B, and C viruses by an improved binding assay: strain-specific receptor epitopes in sialo-sugar chains. Virology 189: 121-131. doi:10.1016/0042-6822(92)90687-K. PubMed: 1376537.
[13]  Suzuki T, Horiike G, Yamazaki Y, Kawabe K, Masuda H et al. (1997) Swine influenza virus strains recognize sialylsugar chains containing the molecular species of sialic acid predominantly present in the swine tracheal epithelium. FEBS Lett 404: 192-196. doi:10.1016/S0014-5793(97)00127-0. PubMed: 9119062.
[14]  Ito T, Suzuki Y, Takada A, Kawamoto A, Otsuki K et al. (1997) Differences in sialic acid-galactose linkages in the chicken egg amnion and allantois influence human influenza virus receptor specificity and variant selection. J Virol 71: 3357-3362. PubMed: 9060710.
[15]  Blixt O, Head S, Mondala T, Scanlan C, Huflejt ME et al. (2004) Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc Natl Acad Sci U S A 101: 17033-17038. doi:10.1073/pnas.0407902101. PubMed: 15563589.
[16]  Belser JA, Blixt O, Chen LM, Pappas C, Maines TR et al. (2008) Contemporary North American influenza H7 viruses possess human receptor specificity: Implications for virus transmissibility. Proc Natl Acad Sci U S A 105: 7558-7563. doi:10.1073/pnas.0801259105. PubMed: 18508975.
[17]  Walther T, Karamanska R, Chan RW, Chan MC, Jia N et al. (2013) Glycomic analysis of human respiratory tract tissues and correlation with influenza virus infection. PLOS Pathog 9: e1003223. PubMed: 23516363.
[18]  Ogata M, Murata T, Murakami K, Suzuki T, Hidari KI et al. (2007) Chemoenzymatic synthesis of artificial glycopolypeptides containing multivalent sialyloligosaccharides with a ?-polyglutamic acid backbone and their effect on inhibition of infection by influenza viruses. Bioorg Med Chem 15: 1383-1393. doi:10.1016/j.bmc.2006.11.006. PubMed: 17129732.
[19]  Hidari KI, Murata T, Yoshida K, Takahashi Y, Minamijima YH et al. (2008) Chemoenzymatic synthesis, characterization, and application of glycopolymers carrying lactosamine repeats as entry inhibitors against influenza virus infection. Glycobiology 18: 779-788. doi:10.1093/glycob/cwn067. PubMed: 18621993.
[20]  Uchida Y, Suzuki Y, Shirakura M, Kawaguchi A, Nobusawa E et al. (2012) Genetics and infectivity of H5N1 highly pathogenic avian influenza viruses isolated from chickens and wild birds in Japan during 2010-11. Virus Res 170: 109-117. doi:10.1016/j.virusres.2012.09.004. PubMed: 23000396.
[21]  Takahashi T, Moriyama Y, Ikari A, Sugatani J, Suzuki T et al. (2008) Surface localization of the nuclear receptor CAR in influenza A virus-infected cells. Biochem Biophys Res Commun 368: 550-555. doi:10.1016/j.bbrc.2008.01.145. PubMed: 18261975.
[22]  Takemae N, Ruttanapumma R, Parchariyanon S, Yoneyama S, Hayashi T et al. (2010) Alterations in receptor-binding properties of swine influenza viruses of the H1 subtype after isolation in embryonated chicken eggs. J Gen Virol 91: 938-948. doi:10.1099/vir.0.016691-0. PubMed: 20007353.
[23]  Ito T, Suzuki Y, Suzuki T, Takada A, Horimoto T et al. (2000) Recognition of N-glycolylneuraminic acid linked to galactose by the α2,3 linkage is associated with intestinal replication of influenza A virus in ducks. J Virol 74: 9300-9305. doi:10.1128/JVI.74.19.9300-9305.2000. PubMed: 10982377.
[24]  Gambaryan AS, Marinina VP, Tuzikov AB, Bovin NV, Rudneva IA et al. (1998) Effects of host-dependent glycosylation of hemagglutinin on receptor-binding properties on H1N1 human influenza A virus grown in MDCK cells and in embryonated eggs. Virology 247: 170-177. doi:10.1006/viro.1998.9224. PubMed: 9705910.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133