全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Sequence Evolution and Expression Regulation of Stress-Responsive Genes in Natural Populations of Wild Tomato

DOI: 10.1371/journal.pone.0078182

Full-Text   Cite this paper   Add to My Lib

Abstract:

The wild tomato species Solanum chilense and S. peruvianum are a valuable non-model system for studying plant adaptation since they grow in diverse environments facing many abiotic constraints. Here we investigate the sequence evolution of regulatory regions of drought and cold responsive genes and their expression regulation. The coding regions of these genes were previously shown to exhibit signatures of positive selection. Expression profiles and sequence evolution of regulatory regions of members of the Asr (ABA/water stress/ripening induced) gene family and the dehydrin gene pLC30-15 were analyzed in wild tomato populations from contrasting environments. For S. chilense, we found that Asr4 and pLC30-15 appear to respond much faster to drought conditions in accessions from very dry environments than accessions from more mesic locations. Sequence analysis suggests that the promoter of Asr2 and the downstream region of pLC30-15 are under positive selection in some local populations of S. chilense. By investigating gene expression differences at the population level we provide further support of our previous conclusions that Asr2, Asr4, and pLC30-15 are promising candidates for functional studies of adaptation. Our analysis also demonstrates the power of the candidate gene approach in evolutionary biology research and highlights the importance of wild Solanum species as a genetic resource for their cultivated relatives.

References

[1]  Fisher RA (1930) The genetical theory of natural selection. Oxford, UK: Oxford University Press.
[2]  Wray GA (2007) The evolutionary significance of cis-regulatory mutations. Nat Rev Genet 8: 206-216. doi:10.1038/nrg2063. PubMed: 17304246.
[3]  Wilson AC, Maxson LR, Sarich VM (1974) Two types of molecular evolution - evidence from studies of interspecific hybridization. Proc Natl Acad Sci U_S_A 71: 2843-2847. doi:10.1073/pnas.71.7.2843. PubMed: 4212492.
[4]  King MC, Wilson AC (1975) Evolution at two levels in humans and chimpanzees. Science 188: 107-116. doi:10.1126/science.1090005. PubMed: 1090005.
[5]  Ferea TL, Botstein D, Brown PO, Rosenzweig RF (1999) Systematic changes in gene expression patterns following adaptive evolution in yeast. Proc Natl Acad Sci U_S_A 96: 9721-9726. doi:10.1073/pnas.96.17.9721. PubMed: 10449761.
[6]  Cooper TF, Rozen DE, Lenski RE (2003) Parallel changes in gene expression after 20,000 generations of evolution in Escherichia coli. Proc Natl Acad Sci U_S_A 100: 1072-1077. doi:10.1073/pnas.0334340100. PubMed: 12538876.
[7]  Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386: 485-488. doi:10.1038/386485a0. PubMed: 9087405.
[8]  Wang H, Nussbaum-Wagler T, Li B, Zhao Q, Vigouroux Y et al. (2005) The origin of the naked grains of maize. Nature 436: 714-719. doi:10.1038/nature03863. PubMed: 16079849.
[9]  Konishi S, Izawa T, Lin SY, Ebana K, Fukuta Y et al. (2006) An SNP caused loss of seed shattering during rice domestication. Science 312: 1392-1396. doi:10.1126/science.1126410. PubMed: 16614172.
[10]  Hutter S, Saminadin-Peter SS, Stephan W, Parsch J (2008) Gene expression variation in African and European populations of Drosophila melanogaster. Genome Biol 9: R12. doi:10.1186/gb-2008-9-1-r12. PubMed: 18208589.
[11]  Müller L, Hutter S, Stamboliyska R, Saminadin-Peter SS, Stephan W et al. (2011) Population transcriptomics of Drosophila melanogaster females. BMC Genomics 12: 81. doi:10.1186/1471-2164-12-81. PubMed: 21276238.
[12]  Matzkin LM (2012) Population transcriptomics of cactus host shifts in Drosophila mojavensis. Mol Ecol 21: 2428-2439. doi:10.1111/j.1365-294X.2012.05549.x. PubMed: 22512269.
[13]  Hodgins KA, Lai Z, Nurkowski K, Huang J, Rieseberg LH (2013) The molecular basis of invasiveness: differences in gene expression of native and introduced common ragweed (Ambrosia artemisiifolia) in stressful and benign environments. Mol Ecol 22: 2496-2510. doi:10.1111/mec.12179. PubMed: 23294156.
[14]  Guggisberg A, Lai Z, Huang J, Rieseberg LH (2013) Transcriptome divergence between introduced and native populations of Canada thistle, Cirsium arvense. New Phytol 199: 595-608. doi:10.1111/nph.12258. PubMed: 23586922.
[15]  Catalán A, Hutter S, Parsch J (2012) Population and sex differences in Drosophila melanogaster brain gene expression. BMC Genomics 13: 654. doi:10.1186/1471-2164-13-654. PubMed: 23170910.
[16]  Smith G, Fang Y, Liu X, Kenny J, Cossins AR et al. (2013) Transcriptome-wide expression variation associated with environmental plasticity and mating success in cactophilic Drosophila mojavensis. Evolution 67: 1950-1963. doi:10.1111/evo.12082. PubMed: 23815652.
[17]  Guo S, Zhang J, Sun H, Salse J, Lucas WJ et al. (2013) The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 45: 51-58. PubMed: 23179023.
[18]  Mboup M, Fischer I, Lainer H, Stephan W (2012) Trans-species polymorphism and allele-specific expression in the CBF gene family of wild tomatoes. Mol Biol Evol 29: 3641-3652. doi:10.1093/molbev/mss176. PubMed: 22787283.
[19]  Baker RL, Hileman LC, Diggle PK (2012) Patterns of shoot architecture in locally adapted populations are linked to intraspecific differences in gene regulation. New Phytol 196: 271-281. doi:10.1111/j.1469-8137.2012.04245.x. PubMed: 22882227.
[20]  Fay JC, Wittkopp PJ (2008) Evaluating the role of natural selection in the evolution of gene regulation. Heredity 100: 191-199. doi:10.1038/sj.hdy.6801000. PubMed: 17519966.
[21]  Schaefke B, Emerson JJ, Wang T-Y, Lu M-YJ, Hsieh L-C et al. (2013) Inheritance of gene expression level and selective constraints on trans- and cis-regulatory changes in yeast. Mol Biol Evol, 30: 2121–33. doi:10.1093/molbev/mst1114. PubMed: 23793114.
[22]  Li C-M, Tzeng J-N, Sung H-M (2012) Effects of cis and trans regulatory variations on the expression divergence of heat shock response genes between yeast strains. Gene 506: 93-97. doi:10.1016/j.gene.2012.06.034. PubMed: 22759523.
[23]  Yá?ez M, Cáceres S, Orellana S, Bastías A, Verdugo I et al. (2009) An abiotic stress-responsive bZIP transcription factor from wild and cultivated tomatoes regulates stress-related genes. Plant Cell Rep 28: 1497-1507. doi:10.1007/s00299-009-0749-4. PubMed: 19652975.
[24]  Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444: 139-158. doi:10.1016/j.abb.2005.10.018. PubMed: 16309626.
[25]  Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Ecol 47: 377-403.
[26]  Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2: 48-54. doi:10.5363/tits.2.10_48.
[27]  Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148: 6-24. doi:10.1104/pp.108.120725. PubMed: 18772351.
[28]  Chen RD, Campeau N, Greer AF, Bellemare G, Tabaeizadeh Z (1993) Sequence of a novel abscisic acid-induced and drought-induced cDNA from wild tomato (Lycopersicon chilense). Plant Physiol 103: 301. doi:10.1104/pp.103.1.301. PubMed: 8208856.
[29]  Rorat T, Szabala BM, Grygorowicz WJ, Wojtowicz B, Yin Z et al. (2006) Expression of SK3-type dehydrin in transporting organs is associated with cold acclimation in Solanum species. Planta 224: 205-221. doi:10.1007/s00425-005-0200-1. PubMed: 16404580.
[30]  Xia H, Camus-Kulandaivelu L, Stephan W, Tellier A, Zhang Z (2010) Nucleotide diversity patterns of local adaptation at drought-related candidate genes in wild tomatoes. Mol Ecol 19: 4144–4154. doi:10.1111/j.1365-294X.2010.04762.x. PubMed: 20831645.
[31]  Iusem ND, Bartholomew DM, Hitz WD, Scolnik PA (1993) Tomato (Lycopersicon esculentum) transcript induced by water deficit and ripening. Plant Physiol 102: 1353-1354. doi:10.1104/pp.102.4.1353. PubMed: 8278555.
[32]  Rossi M, Iusem ND (1994) Tomato (Lycopersicon esculentum) genomic clone homologous to a gene encoding an abscisic acid induced protein. Plant Physiol 104: 1073-1074. doi:10.1104/pp.104.3.1073. PubMed: 8165244.
[33]  Konrad Z, Bar-Zvi D (2008) Synergism between the chaperone-like activity of the stress regulated ASR1 protein and the osmolyte glycine-betaine. Planta 227: 1213-1219. doi:10.1007/s00425-008-0693-5. PubMed: 18270732.
[34]  Maskin L, Frankel N, Gudesblat G, Demergasso MJ, Pietrasanta LI et al. (2007) Dimerization and DNA-binding of ASR1, a small hydrophilic protein abundant in plant tissues suffering from water loss. Biochem Biophys Res Commun 352: 831-835. doi:10.1016/j.bbrc.2006.11.115. PubMed: 17157822.
[35]  Saumonneau A, Agasse A, Bidoyen MT, Lallemand M, Cantereau A et al. (2008) Interaction of grape ASR proteins with a DREB transcription factor in the nucleus. FEBS Lett 582: 3281-3287. doi:10.1016/j.febslet.2008.09.015. PubMed: 18804467.
[36]  Kalifa Y, Gilad A, Konrad Z, Zaccai M, Scolnik PA et al. (2004) The water- and salt-stress-regulated Asr1 (abscisic acid stress ripening) gene encodes a zinc-dependent DNA-binding protein. Biochem J 381: 373-378. doi:10.1042/BJ20031800. PubMed: 15101820.
[37]  Carrari F, Fernie AR, Iusem ND (2004) Heard it through the grapevine? ABA and sugar cross-talk: the ASR story. Trends Plant Sci 9: 57-59. doi:10.1016/j.tplants.2003.12.004. PubMed: 15106586.
[38]  Frankel N, Nunes-Nesi A, Balbo I, Mazuch J, Centeno D et al. (2007) ci21A/Asr1 expression influences glucose accumulation in potato tubers. Plant Mol Biol 63: 719-730. doi:10.1007/s11103-006-9120-0. PubMed: 17211513.
[39]  Maskin L, Maldonado S, Iusem ND (2008) Tomato leaf spatial expression of stress-induced Asr genes. Mol Biol Rep 35: 501-505. doi:10.1007/s11033-007-9114-2. PubMed: 17602312.
[40]  Jeanneau M, Gerentes D, Foueillassar X, Zivy M, Vidal J et al. (2002) Improvement of drought tolerance in maize: towards the functional validation of the Zm-Asr1 gene and increase of water use efficiency by over-expressing C4-PEPC. Biochimie 84: 1127-1135. doi:10.1016/S0300-9084(02)00024-X. PubMed: 12595141.
[41]  Kalifa Y, Perlson E, Gilad A, Konrad Z, Scolnik PA et al. (2004) Over-expression of the water and salt stress-regulated Asr1 gene confers an increased salt tolerance. Plant Cell Environ 27: 1459-1468. doi:10.1111/j.1365-3040.2004.01251.x.
[42]  Yang C-Y, Chen Y-C, Jauh GY, Wang C-S (2005) A lily ASR protein involves abscisic acid signaling and confers drought and salt resistance in Arabidopsis. Plant Physiol 139: 836-846. doi:10.1104/pp.105.065458. PubMed: 16169963.
[43]  Maskin L, Gudesblat GE, Moreno JE, Carrari FO, Frankel N et al. (2001) Differential expression of the members of the Asr gene family in tomato (Lycopersicon esculentum). Plant Sci 161: 739-746. doi:10.1016/S0168-9452(01)00464-2.
[44]  Frankel N, Carrari F, Hasson E, Iusem ND (2006) Evolutionary history of the Asr gene family. Gene 378: 74-83. doi:10.1016/j.gene.2006.05.010. PubMed: 16822623.
[45]  Frankel N, Hasson E, Iusem ND, Rossi MS (2003) Adaptive evolution of the water stress-induced gene Asr2 in Lycopersicon species dwelling in arid habitats. Mol Biol Evol 20: 1955-1962. doi:10.1093/molbev/msg214. PubMed: 12949146.
[46]  Giombini MI, Frankel N, Iusem ND, Hasson E (2009) Nucleotide polymorphism in the drought responsive gene Asr2 in wild populations of tomato. Genetica 136: 13-25. doi:10.1007/s10709-008-9295-1. PubMed: 18636230.
[47]  Fischer I, Camus-Kulandaivelu L, Allal F, Stephan W (2011) Adaptation to drought in two wild tomato species: the evolution of the Asr gene family. New Phytol 190: 1032-1044. doi:10.1111/j.1469-8137.2011.03648.x. PubMed: 21323928.
[48]  Anderson JT, Willis JH, Mitchell-Olds T (2011) Evolutionary genetics of plant adaptation. Trends Genet 27: 258-266. doi:10.1016/j.tig.2011.04.001. PubMed: 21550682.
[49]  Song BH, Mitchell-Olds T (2011) Evolutionary and ecological genomics of non-model plants. J Syst Evol 49: 17-24. doi:10.1111/j.1759-6831.2010.00111.x. PubMed: 21394233.
[50]  Riihim?ki M, Podolsky R, Kuittinen H, Koelewijn H, Savolainen O (2005) Studying genetics of adaptive variation in model organisms: flowering time variation in Arabidopsis lyrata. Genetica 123: 63-74. doi:10.1007/s10709-003-2711-7. PubMed: 15881681.
[51]  Turner TL, Bourne EC, Von Wettberg EJ, Hu TT, Nuzhdin SV (2010) Population resequencing reveals local adaptation of Arabidopsis lyrata to serpentine soils. Nat Genet 42: 260-263. doi:10.1038/ng.515. PubMed: 20101244.
[52]  Leinonen PH, Remington DL, Savolainen O (2011) Local adaptation, phenotypic differentiation, and hybrid fitness in diverged natural populations of Arabidopsis lyrata. Evolution 65: 90-107. doi:10.1111/j.1558-5646.2010.01119.x. PubMed: 20812972.
[53]  Knight CA, Vogel H, Kroymann J, Shumate A, Witsenboer H et al. (2006) Expression profiling and local adaptation of Boechera holboellii populations for water use efficiency across a naturally occurring water stress gradient. Mol Ecol 15: 1229-1237. doi:10.1111/j.1365-294X.2006.02818.x. PubMed: 16626450.
[54]  Kane NC, Rieseberg LH (2007) Selective sweeps reveal candidate genes for adaptation to drought and salt tolerance in common sunflower, Helianthus annuus. Genetics 175: 1823-1834. doi:10.1534/genetics.106.067728. PubMed: 17237516.
[55]  Kane NC, Rieseberg LH (2008) Genetics and evolution of weedy Helianthus annuus populations: adaptation of an agricultural weed. Mol Ecol 17: 384-394. doi:10.1111/j.1365-294X.2007.03467.x. PubMed: 17725567.
[56]  Grillo MA, Li C, Fowlkes AM, Briggeman TM, Zhou A et al. (2009) Genetic architecture for the adaptive origin of annual wild rice, Oryza nivara. Evolution 63: 870-883. doi:10.1111/j.1558-5646.2008.00602.x. PubMed: 19236476.
[57]  Moyle LC (2008) Ecological and evolutionary genomics in the wild tomatoes (Solanum sect. Lycopersicon). Evolution 62: 2995-3013. doi:10.1111/j.1558-5646.2008.00487.x. PubMed: 18752600.
[58]  Peralta I, Spooner D, Knapp S (2008) Taxonomy of wild tomatoes and their relatives (Solanum sect. Lycopersicoides, sect. Juglandifolia, sect. Lycopersicon; Solanaceae). Syst Bot Monogr 84: 1–186..
[59]  St?dler T, Roselius K, Stephan W (2005) Genealogical footprints of speciation processes in wild tomatoes: demography and evidence for historical gene flow. Evolution 59: 1268-1279. doi:10.1554/04-722. PubMed: 16050103.
[60]  Spooner D, Peralta I, Knapp S (2005) Comparison of AFLPs with other markers for phylogenetic inference in wild tomatoes [Solanum. L. section Lycopersicon. (Mill.) Wettst.]. Taxon 54: 43-61.
[61]  Nakazato T, Warren DL, Moyle LC (2010) Ecological and geographic modes of species divergence in wild tomatoes. Am J Bot 97: 680-693. doi:10.3732/ajb.0900216. PubMed: 21622430.
[62]  Chetelat RT, Pertuzé RA, Faúndez L, Graham EB, Jones CM (2008) Distribution, ecology and reproductive biology of wild tomatoes and related nightshades from the Atacama Desert region of northern Chile. Euphytica 167: 77-93.
[63]  Lange BW, Langley CH, Stephan W (1990) Molecular evolution of Drosophila metallothionein genes. Genetics 126: 921-932. PubMed: 1981765.
[64]  Baudry E, Kerdelhué C, Innan H, Stephan W (2001) Species and recombination effects on DNA variability in the tomato genus. Genetics 158: 1725-1735. PubMed: 11514458.
[65]  Roselius K, Stephan W, St?dler T (2005) The relationship of nucleotide polymorphism, recombination rate and selection in wild tomato species. Genetics 171: 753-763. doi:10.1534/genetics.105.043877. PubMed: 16085701.
[66]  Arunyawat U, Stephan W, St?dler T (2007) Using multilocus sequence data to assess population structure, natural selection, and linkage disequilibrium in wild tomatoes. Mol Biol Evol 24: 2310-2322. doi:10.1093/molbev/msm162. PubMed: 17675653.
[67]  St?dler T, Arunyawat U, Stephan W (2008) Population genetics of speciation in two closely related wild tomatoes (Solanum section Lycopersicon). Genetics 178: 339-350. doi:10.1534/genetics.107.081810. PubMed: 18202377.
[68]  Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451-1452. doi:10.1093/bioinformatics/btp187. PubMed: 19346325.
[69]  Watterson GA (1975) Number of segregating sites in genetic models without recombination. Theor Popul Biol 7: 256-276. doi:10.1016/0040-5809(75)90020-9. PubMed: 1145509.
[70]  Tajima F (1983) Evolutionary relationship of DNA sequences in finite populations. Genetics 105: 437-460. PubMed: 6628982.
[71]  Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585-595. PubMed: 2513255.
[72]  Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133: 693-709. PubMed: 8454210.
[73]  Fay JC, Wu CI (2000) Hitchhiking under positive Darwinian selection. Genetics 155: 1405-1413. PubMed: 10880498.
[74]  Depaulis F, Veuille M (1998) Neutrality tests based on the distribution of haplotypes under an infinite-site model. Mol Biol Evol 15: 1788-1790. doi:10.1093/oxfordjournals.molbev.a025905. PubMed: 9917213.
[75]  Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y et al. (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30: 325-327. doi:10.1093/nar/30.1.325. PubMed: 11752327.
[76]  Expósito-Rodríguez M, Borges AA, Borges-Pérez A, Pérez JA (2008) Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol 8: 131. doi:10.1186/1471-2229-8-131. PubMed: 19102748.
[77]  Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2?ΔΔCT method. Methods 25: 402-408. doi:10.1006/meth.2001.1262. PubMed: 11846609.
[78]  Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8: R19. doi:10.1186/gb-2007-8-2-r19. PubMed: 17291332.
[79]  R Development Core Team (2012) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
[80]  Kirby DA, Stephan W (1996) Multi-locus selection and the structure of the white gene of Drosophila melanogaster. Genetics 144: 635-645. PubMed: 8889526.
[81]  Stern DL, Orgogozo V (2009) Is genetic evolution predictable? Science 323: 746-751. doi:10.1126/science.1158997. PubMed: 19197055.
[82]  Emerson JJ, Li W-H (2010) The genetic basis of evolutionary change in gene expression levels. Philos Trans R Soc B 365: 2581-2590. doi:10.1098/rstb.2010.0005. PubMed: 20643748.
[83]  Proost S, Van Bel M, Sterck L, Billiau K, Van Parys T et al. (2009) PLAZA: A comparative genomics resource to study gene and genome evolution in plants. Plant Cell 21: 3718-3731. doi:10.1105/tpc.109.071506. PubMed: 20040540.
[84]  Silhavy D, Hutvágner G, Barta E, Bánfalvi Z (1995) Isolation and characterization of a water-stress-inducible cDNA clone from Solanum chacoense. Plant Mol Biol 27: 587-595. doi:10.1007/BF00019324. PubMed: 7894021.
[85]  Padmanabhan V, Dias DAL, Newton RJ (1997) Expression analysis of a gene family in loblolly pine (Pinus taeda L.) induced by water deficit stress. Plant Mol Biol 35: 801-807. doi:10.1023/A:1005897921567. PubMed: 9426600.
[86]  Wang C-S, Liau Y-E, Huang J-C, Wu T-D, Su C-C et al. (1998) Characterization of a desiccation-related protein in lily pollen during development and stress. Plant Cell Physiol 39: 1307-1314. doi:10.1093/oxfordjournals.pcp.a029335. PubMed: 10050314.
[87]  Shen G, Pang Y, Wu W, Deng Z, Liu X et al. (2005) Molecular cloning, characterization and expression of a novel Asr gene from Ginkgo biloba. Plant Physiol Biochem 43: 836-843. doi:10.1016/j.plaphy.2005.06.010. PubMed: 16289880.
[88]  Philippe R, Courtois B, McNally KL, Mournet P, El-Malki R et al. (2010) Structure, allelic diversity and selection of Asr genes, candidate for drought tolerance, in Oryza sativa L. and wild relatives. Theor Appl Genet 121: 769-787. doi:10.1007/s00122-010-1348-z. PubMed: 20454772.
[89]  Schneider A, Salamini F, Gebhardt C (1997) Expression patterns and promoter activity of the cold-regulated gene ci21A of potato. Plant Physiol 113: 335-345. doi:10.1104/pp.113.2.335. PubMed: 9046587.
[90]  Blake WJ, Balázsi G, Kohanski MA, Isaacs FJ, Murphy KF et al. (2006) Phenotypic consequences of promoter-mediated transcriptional noise. Mol Cell 24: 853-865. doi:10.1016/j.molcel.2006.11.003. PubMed: 17189188.
[91]  Maheshri N, O'Shea EK (2007) Living with noisy genes: how cells function reliably with inherent variability in gene expression. Annu Rev Biophys Biomol Struct 36: 413-434. doi:10.1146/annurev.biophys.36.040306.132705. PubMed: 17477840.
[92]  Ha M, Li WH, Chen ZJ (2007) External factors accelerate expression divergence between duplicate genes. Trends Genet 23: 162-166. doi:10.1016/j.tig.2007.02.005. PubMed: 17320239.
[93]  Carey LB, van Dijk D, Sloot PM, Kaandorp JA, Segal E (2013) Promoter sequence determines the relationship between expression level and noise. PLOS Biol 11: e1001528. PubMed: 23565060.
[94]  the Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485: 635-641. doi:10.1038/nature11119. PubMed: 22660326.
[95]  He F, Zhang X, Hu J, Turck F, Dong X et al. (2012) Genome-wide analysis of cis-regulatory divergence between species in the Arabidopsis genus. Mol Biol Evol 29: 3385-3395. doi:10.1093/molbev/mss146. PubMed: 22641789.
[96]  Tellier A, Laurent SJY, Lainer H, Pavlidis P, Stephan W (2012) Inference of seed bank parameters in two wild tomato species using ecological and genetic data. Proc Natl Acad Sci U_S_A 108: 17052-17057. PubMed: 21949404.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133