全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Probing the Dynamic Process of Encapsulation in Escherichia coli GroEL

DOI: 10.1371/journal.pone.0078135

Full-Text   Cite this paper   Add to My Lib

Abstract:

Kinetic analyses of GroE-assisted folding provide a dynamic sequence of molecular events that underlie chaperonin function. We used stopped-flow analysis of various fluorescent GroEL mutants to obtain details regarding the sequence of events that transpire immediately after ATP binding to GroEL and GroEL with prebound unfolded proteins. Characterization of GroEL CP86, a circularly permuted GroEL with the polypeptide ends relocated to the vicinity of the ATP binding site, showed that GroES binding and protection of unfolded protein from solution is achieved surprisingly early in the functional cycle, and in spite of greatly reduced apical domain movement. Analysis of fluorescent GroEL SR-1 and GroEL D398A variants suggested that among other factors, the presence of two GroEL rings and a specific conformational rearrangement of Helix M in GroEL contribute significantly to the rapid release of unfolded protein from the GroEL apical domain.

References

[1]  Thirumalai D, Lorimer GH (2001) Chaperonin-mediated protein folding. Annu Rev Biophys Biomol Struct 30: 245–269.
[2]  Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295: 1852–1858.
[3]  Horwich AL, Fenton WA (2009) Chaperonin-mediated protein folding: using a central cavity to kinetically assist polypeptide chain folding. Quarterly Reviews of Biophysics 42: 83–116.
[4]  Braig K, Otwinowski Z, Hegde R, Boisvert DC, Joachimiak A, et al. (1994) The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature. 371: 578–586.
[5]  Xu Z, Horwich AL, Sigler PB (1997) The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388: 741–750.
[6]  Chaudhry C, Horwich AL, Brunger AT, Adams PD (2004) Exploring the structural dynamics of the E.coli chaperonin GroEL using translation-libration-screw crystallographic refinement of intermediate states. J Mol Biol 342: 229–245.
[7]  Wang J, Boisvert DC (2003) Structural basis for GroEL-assisted protein folding from the crystal structure of (GroEL-KMgATP)14 at 2.0A resolution. J Mol Biol 327: 843–855.
[8]  Weissman JS, Hohl CM, Kovalenko O, Kashi Y, Chen S, et al. (1995) Mechanism of GroEL action: productive release of polypeptide from a sequestered position under GroES. Cell 83: 577–587.
[9]  Weissman JS, Rye HS, Fenton WA, Beechem JM, Horwich AL (1996) Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction. Cell 84: 481–490.
[10]  Rye HS, Roseman AM, Chen S, Furtak K, Fenton WA, et al. (1999) GroEL-GroES cycling: ATP and nonnative polypeptide direct alternation of folding-active rings. Cell 97: 325–338.
[11]  Rye HS, Burston SG, Fenton WA, Beechem JM, Xu Z, et al. (1997) Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL. Nature 388: 792–798.
[12]  Ranson NA, Farr GW, Roseman AM, Gowen B, Fenton WA, et al. (2001) ATP-bound states of GroEL captured by cryo-electron microscopy. Cell 107: 869–879.
[13]  Clare DK, Vasishtan D, Stagg S, Quispe J, Farr GW, et al. (2012) ATP-triggered conformational changes delineate substrate-binding and -folding mechanics of the GroEL chaperonin. Cell 149: 113–123.
[14]  Yifrach O, Horovitz A (2000) Coupling between protein folding and allostery in the GroE chaperonin system. Proc Natl Acad Sci U S A 97: 1521–1524.
[15]  Yifrach O, Horovitz A (1998) Transient kinetic analysis of adenosine 5′-triphosphate binding-induced conformational changes in the allosteric chaperonin GroEL. Biochemistry 37: 7083–7088.
[16]  Yifrach O, Horovitz A (1995) Nested cooperativity in the ATPase activity of the oligomeric chaperonin GroEL. Biochemistry 34: 5303–5308.
[17]  Poso D, Clarke AR, Burston SG (2004) A kinetic analysis of the nucleotide-induced allosteric transitions in a single-ring mutant of GroEL. J Mol Biol 338: 969–977.
[18]  Cliff MJ, Kad NM, Hay N, Lund PA, Webb MR, et al. (1999) A kinetic analysis of the nucleotide-induced allosteric transitions of GroEL. J Mol Biol 293: 667–684.
[19]  Cliff MJ, Limpkin C, Cameron A, Burston SG, Clarke AR (2006) Elucidation of steps in the capture of a protein substrate for efficient encapsulation by GroE. J Biol Chem 281: 21266–21275.
[20]  Yoshimi T, Hongo K, Mizobata T, Kawata Y (2006) Multiple structural transitions of the GroEL subunit are sensitive to intermolecular interactions with cochaperonin and refolding polypeptide. J Biochem 139: 407–419.
[21]  Taniguchi M, Yoshimi T, Hongo K, Mizobata T, Kawata Y (2004) Stopped-flow fluorescence analysis of the conformational changes in the GroEL apical domain: relationships between movements in the apical domain and the quaternary structure of GroEL. J Biol Chem 279: 16368–16376.
[22]  Mizobata T, Uemura T, Isaji K, Hirayama T, Hongo K, et al. (2011) Probing the functional mechanism of Escherichia coli GroEL using circular permutation. PLoS One 6: e26462.
[23]  Mizobata T, Kawata Y (1994) The guanidine-induced conformational changes of the chaperonin GroEL from Escherichia coli. Evidence for the existence of an unfolding intermediate state. Biochim Biophys Acta 1209: 83–88.
[24]  Kubo T, Mizobata T, Kawata Y (1993) Refolding of yeast enolase in the presence of the chaperonin GroE. The nucleotide specificity of GroE and the role of GroES. J Biol Chem 268: 19346–19351.
[25]  Hayer-Hartl M (2000) Assay of malate dehydrogenase. A substrate for the E. coli chaperonins GroEL and GroES. Methods Mol Biol 140: 127–132.
[26]  Miller DM, Kurzban GP, Mendoza JA, Chirgwin JM, Hardies SC, et al. (1992) Recombinant bovine rhodanese: purification and comparison with bovine liver rhodanese. Biochim Biophys Acta 1121: 286–292.
[27]  Heinemann U, Hahn M (1995) Circular permutation of polypeptide chains: implications for protein folding and stability. Progress in Biophysics and Molecular Biology 64: 121–143.
[28]  Hennecke J, Sebbel P, Glockshuber R (1999) Random circular permutation of DsbA reveals segments that are essential for protein folding and stability. J Mol Biol 286: 1197–1215.
[29]  Iwakura M, Nakamura T, Yamane C, Maki K (2000) Systematic circular permutation of an entire protein reveals essential folding elements. Nature Structural Biology 7: 580–585.
[30]  Baird GS, Zacharias DA, Tsien RY (1999) Circular permutation and receptor insertion within green fluorescent proteins. Proc Natl Acad Sci U S A 96: 11241–11246.
[31]  Machida K, Fujiwara R, Tanaka T, Sakane I, Hongo K, et al. (2009) Gly192 at hinge 2 site in the chaperonin GroEL plays a pivotal role in the dynamic apical domain movement that leads to GroES binding and efficient encapsulation of substrate proteins. Biochim Biophys Acta 1794: 1344–1354.
[32]  Kovacs E, Sun Z, Liu H, Scott DJ, Karsisiotis AI, et al. (2010) Characterisation of a GroEL single-ring mutant that supports growth of Escherichia coli and has GroES-dependent ATPase activity. J Mol Biol 396: 1271–1283.
[33]  Burston SG, Ranson NA, Clarke AR (1995) The origins and consequences of asymmetry in the chaperonin reaction cycle. J Mol Biol 249: 138–152.
[34]  Tyagi NK, Fenton WA, Horwich AL (2009) GroEL/GroES cycling: ATP binds to an open ring before substrate protein favoring protein binding and production of the native state. Proc Natl Acad Sci U S A 106: 20264–20269.
[35]  Fei X, Yang D, Laronde-Leblanc N, Lorimer GH (2013) Crystal structure of a GroEL-ADP complex in the relaxed allosteric state at 2.7 A resolution. Proc Natl Acad Sci U S A 110: E2958–2966.
[36]  Chen DH, Madan D, Weaver J, Lin Z, Schroder GF, et al. (2013) Visualizing GroEL/ES in the act of encapsulating a folding protein. Cell 153: 1354–1365.
[37]  Shtilerman M, Lorimer GH, Englander SW (1999) Chaperonin function: folding by forced unfolding. Science 284: 822–825.
[38]  Lin Z, Rye HS (2004) Expansion and compression of a protein folding intermediate by GroEL. Mol Cell 16: 23–34.
[39]  Chatellier J, Hill F, Foster NW, Goloubinoff P, Fersht AR (2000) From minichaperone to GroEL 3: properties of an active single-ring mutant of GroEL. J Mol Biol 304: 897–910.
[40]  Liu H, Kovacs E, Lund PA (2009) Characterisation of mutations in GroES that allow GroEL to function as a single ring. FEBS Lett 583: 2365–2371.
[41]  Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, et al. (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25: 1605–1612.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133