全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Reproductive Trade-Offs May Moderate the Impact of Gyrodactylus salaris in Warmer Climates

DOI: 10.1371/journal.pone.0078909

Full-Text   Cite this paper   Add to My Lib

Abstract:

Gyrodactylus salaris is a notifiable freshwater ectoparasite of salmonids. Its primary host is Atlantic salmon (Salmo salar), upon which infections can cause death, and have led to massive declines in salmon numbers in Norway, where the parasite is widespread. Different strains of S. salar vary in their susceptibility, with Atlantic strains (such as those found in Norway) exhibiting no resistance to the parasite, and Baltic strains demonstrating an innate resistance sufficient to regulate parasite numbers on the host causing it to either die out or persist at a low level. In this study, Leslie matrix and compartmental models were used to generate data that demonstrated the population growth of G. salaris on an individual host is dependent on the total number of offspring per parasite, its longevity and the timing of its births. The data demonstrated that the key factor determining the rate of G. salaris population growth is the time at which the parasite first gives birth, with rapid birth rate giving rise to large population size. Furthermore, it was shown that though the parasite can give birth up to four times, only two births are required for the population to persist as long as the first birth occurs before a parasite is three days old. As temperature is known to influence the timing of the parasite's first birth, greater impact may be predicted if introduced to countries with warmer climates than Norway, such as the UK and Ireland which are currently recognised to be free of G. salaris. However, the outputs from the models developed in this study suggest that temperature induced trade-offs between the total number of offspring the parasite gives birth to and the first birth timing may prevent increased population growth rates over those observed in Norway.

References

[1]  North Atlantic Salmon Conservation Organization (NASCO) Available: http://www.nasco.int/.Accessed 2013 Jun 28.
[2]  Heggberget TG, Johnsen BO (1982) Infestations by Gyrodactylus sp. of Atlantic salmon, Salmo salar L., in Norwegian rivers. J Fish Biol 21: : 15–26.
[3]  Johnsen BO, Jensen AJ (1986) Infestations of Atlantic salmon, Salmo salar, . by Gyrodactylus salaris in Norwegian riversJ Fish Biol 29: : 233–241.
[4]  Johnsen BO, Jensen AJ (1992) Infection of Atlantic salmon, Salmo salar L., by Gyrodactylus salaris Malmberg, 1957, in the river Lakselva, Misv?r in northern Norway. J Fish Biol 40: : 433–444.
[5]  Mo TA (1994) Status of Gyrodactylus salaris problems and research in Norway. In: Pike AW, Lewis JW, editors. Parasitic Diseases of Fish. Great Britain: Samara Publishing Ltd., Dyfed, Wales, UK, p. 43–58.
[6]  Bakke TA, Cable J, Harris PD (2007) The biology of gyrodactylid monogeneans: the “Russian Doll-killers”. Adv Parasit 64: 161–376.
[7]  NOU (Norges Offentlige Utredninger) (1999) Til laks ?t alle kan ingen gjera? Om ?rsaker til nedgangen i den norske villaksbestandene og forslag til strategier og tiltak for ? bedre situasjonen. Utredning fra et utvalg oppnevnt ved kongelig resolusjon av 18. Juli 1977. Norges Offentlige Utredninger, Milj?verndepartementet 1999: 1–297. [In Norwegian]
[8]  Bakke TA, MacKenzie K (1993) Comparative susceptibility of native Scottish and Norwegian stocks of Atlantic salmon, Salmo salar L., to Gyrodactylus salaris Malmberg: Laboratory experiments. Fish Res 17: 69–85.
[9]  Dalgaard MB, Nielsen CV, Buchmann K (2003) Comparative susceptibility of two races of Salmo salar (Baltic Lule river and Atlantic Conon river strains) to infection with Gyrodactylus salaris. Dis Aquat Organ 53: 173–176.
[10]  Dalgaard MB, Larsen TB, Jorndrup S, Buchmann K (2004) Differing resistance of Atlantic salmon strains and rainbow trout to Gyrodactylus salaris infection. J Aquat Anim Health 16: 109–115.
[11]  Tanum K (1983) Studier av taksonomi og vertsforhold hos Gyrodactylusarter pa° laksefisk av slektene Salmo og Salvelinus i Norge. Cand. Real. Thesis, Zoological Museum, University of Oslo. [In Norwegian]
[12]  Malmberg G (1989) Salmonid transports, culturing and Gyrodactylus infections in Scandinavia. In: Bauer O, editor. Parasites of freshwater fishes of North-West Europe. Petrozavodsk: Institute of Biology, USSR Academy of Sciences, Karelian Branch. 88–104.
[13]  Malmberg G (1998) On the evolution within the family Gyrodactylidae (Monogenea). Int J Parasitol 28: 1625–163.
[14]  Kania P, Larsen TB, Ingerslev HC, Buchmann K (2007) Baltic salmon activates immune relevant genes in fin tissue when responding to Gyrodactylus salaris infection. Dis Aquat Organ 76: 81–85.
[15]  Cable J, Harris PD, Bakke TA (2000) Population growth of Gyrodactylus salaris (Monogenea) on Norwegian and Baltic Atlantic salmon (Salmo salar) stocks. Parasitology 121: 621–629.
[16]  Buchmann K (1999) Immune mechanisms in fish skin against monogeneans—a model. Folia Parasit 46: 1–9.
[17]  Cable J, van Oosterhout C (2007) The role of innate and acquired resistance in two natural populations of guppies (Poecilia reticulata) infected with the ectoparasite Gyrodactylus turnbulli. Biol J Linn Soc 90: 647–655.
[18]  Lindenstr?m T, Buchmann K, Secombes CJ (2003) Gyrodactylus derjavini infection elicits IL-1? expression in rainbow trout skin. Fish Shellfish Immun 15: 107–115.
[19]  Lindenstr?m T, Secombes CJ, Buchmann K (2004) Expression of immune response genes in rainbow trout skin induced by Gyrodactylus derjavini infections. Vet Immunol Immunop 97: 137–148.
[20]  Peeler EJ, Thrush MA (2004) Qualitative analysis of the risk of introducing Gyrodactylus salaris into the United Kingdom. Dis Aquat Organ 62: 103–113.
[21]  Ramirez R, Bakke TA, Harris PD (2012) An agent based modelling approach to estimate error in gyrodactylid population growth. Int. J. Parasitol. 42: 809–817.
[22]  Jansen PA, Bakke TA (1991) Temperature-dependant reproduction and survival of Gyrodactylus salaris Malmberg, 1957 (Platyhelminthes - Monogenea) on Atlantic salmon (Salmo salar L.). Parasitology 102: 105–112.
[23]  Andersen PS, Buchmann K (1998) Temperature dependent population growth of Gyrodactylus derjavini on rainbow trout, Oncorhynchus mykiss. J Helminthol 72: 9–14.
[24]  Leslie PH (1945) On the use of matrices in certain population mathematics. Biometrika 33: 183–212.
[25]  Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81: 2340–2361.
[26]  Bakke TA, Jansen PA, Hansen LP (1990) Differences in the host resistance of Atlantic salmon, Salmo salar L., stocks to the monogenean Gyrodactylus salaris Malmberg, 1957. J Fish Biol 37: 577–587.
[27]  Bakke TA, Harris PD (1998) Diseases and parasites in wild Atlantic salmon (Salmo salar) populations. Can J Fish Aquat Sci 55: 247–266.
[28]  Anonymous (1999) Til laks ?t alle kan ingen gjera? Om ?rsaker til nedgangen i de norske villaksbestandene og forslag til strategier og tiltak for ? bedre situasjonen. Norges Offentlige Utredninger 9: 1–297. [In Norwegian]
[29]  Johnsen BO, Mokkelgjerd PI, Jensen AJ (1999) The parasite Gyrodactylus salaris on salmon parr in Norwegian rivers, status report at the beginning of year 2000. NINA Oppdargsmelding 617: 1–129. [In Norwegian]
[30]  Johnsen BO, Jensen AJ (2003) Gyrodactylus salaris in Norwegian waters. In: Atlantic Salmon: Biology, Conservation and Restoration. Russian Academy of Sciences, Karelian Research Center, Institute of Biology, Petrozavodsk: 38–44.
[31]  Mo TA (2004) Innforsel av Gyrodactylus salaris til Norge og egenskaper hos parasitten av betydning for valg av strategi og tiltak mot den. Norsk Veterin?rtidsskrift 3: 164–166. [In Norwegian]
[32]  Peeler EJ, Taylor NGH (2011) The application of epidemiology in aquatic animal health - opportunities and challenges. Vet Res 42: 94.
[33]  Harris PD, Soleng A, Bakke TA (2000) Increased susceptibility of salmonids to the monogenean Gyrodactylus salaris following administration of hydrocortisone acetate. Parasitology 120: 57–64.
[34]  Lindenstr?m T, Sigh J, Dalgaard MB, Buchmann K (2006) Skin expression of IL-1? in East Atlantic salmon, Salmo salar L., highly susceptible to Gyrodactylus salaris infection is enhanced compared to a low susceptibility Baltic stock. J Fish Dis 29: 123–128.
[35]  van der Linden P, Mitchell JFB (2009) ENSEMBLES: Climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, Exeter.
[36]  Kochin BF, Bull JJ, Antia R (2010) Parasite evolution and life history theory. PLoS Biol 8 (10): e1000524 doi:10.1371/journal.pbio.1000524.
[37]  Scott ME, Anderson RM (1984) The population dynamics of Gyrodactylus bullatarudis (Monogenea) within laboratory populations of the fish host Poecilia reticulata. Parasitology 89: 159–194.
[38]  des Clers S (1993) Modelling the impact of disease-induced mortality on the population size of wild salmonids. Fish Res 17: 237–248.
[39]  Paisley LG, Karlsen E, Jarp J, Mo TA (1999) A Monte Carlo simulation model for assessing the risk of introduction of Gyrodactylus salaris to the Tana river, Norway. Dis Aquat Organ, 37 , 145–152.
[40]  Hogasen HR, Brun E (2003) Risk of inter-river transmission of Gyrodactylus salaris by migrating Atlantic salmon smolts, estimated by Monte Carlo simulation. Dis Aquat Organ, 57 , 247–254.
[41]  Peeler EJ, Gardiner R, Thrush MA (2004) Qualitative risk assessment of routes of transmission of the exotic fish parasite Gyrodactylus salaris between river catchments in England and Wales. Prev Vet Med, 64 , 175–189.
[42]  Peeler EJ, Thrush M, Paisley L, Rodgers C (2006) An assessment of the risk of spreading the fish parasite Gyrodactylus salaris to uninfected territories in the European Union with the movement of live Atlantic salmon (Salmo salar) from coastal waters. Aquaculture, 258 , 187–197.
[43]  Jansen PA, Matthews L, Toft N (2007) Geographic risk factors for inter-river dispersal of Gyrodactylus salaris in fjord systems in Norway. Dis Aquat Organ, 2 , 139–149.
[44]  van Oosterhout C, Potter R, Wright H, Cable J (2008) Gyro-scope: agent-based computer model for simulating Gyrodactylus infections on fish hosts. Int J Parasitol 38: 541–548.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133