全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

A P300-based Brain-Computer Interface with Stimuli on Moving Objects: Four-Session Single-Trial and Triple-Trial Tests with a Game-Like Task Design

DOI: 10.1371/journal.pone.0077755

Full-Text   Cite this paper   Add to My Lib

Abstract:

Brain-computer interfaces (BCIs) are tools for controlling computers and other devices without using muscular activity, employing user-controlled variations in signals recorded from the user’s brain. One of the most efficient noninvasive BCIs is based on the P300 wave of the brain’s response to stimuli and is therefore referred to as the P300 BCI. Many modifications of this BCI have been proposed to further improve the BCI’s characteristics or to better adapt the BCI to various applications. However, in the original P300 BCI and in all of its modifications, the spatial positions of stimuli were fixed relative to each other, which can impose constraints on designing applications controlled by this BCI. We designed and tested a P300 BCI with stimuli presented on objects that were freely moving on a screen at a speed of 5.4°/s. Healthy participants practiced a game-like task with this BCI in either single-trial or triple-trial mode within four sessions. At each step, the participants were required to select one of nine moving objects. The mean online accuracy of BCI-based selection was 81% in the triple-trial mode and 65% in the single-trial mode. A relatively high P300 amplitude was observed in response to targets in most participants. Self-rated interest in the task was high and stable over the four sessions (the medians in the 1st/4th sessions were 79/84% and 76/71% in the groups practicing in the single-trial and triple-trial modes, respectively). We conclude that the movement of stimulus positions relative to each other may not prevent the efficient use of the P300 BCI by people controlling their gaze, e.g., in robotic devices and in video games.

References

[1]  Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain-computer interfaces for communication and control. Clin Neurophysiol 113: 767-791. doi:10.1016/S1388-2457(02)00057-3. PubMed: 12048038.
[2]  Plass-Oude Bos D, Reuderink B, van de Laar B, Gürk?k H, Mühl C et al. (2010) Brain-computer interfacing and games. In: DS TanA. Nijholt. Brain-Computer Interfaces. London: Springer Verlag. pp. 149-178.
[3]  Wolpaw JR (2007) Brain-computer interfaces as new brain output pathways. J Physiol 579: 613-619. doi:10.1113/jphysiol.2006.125948. PubMed: 17255164.
[4]  Kaplan AY, Lim JJ, Jin KS, Park BW, Byeon JG, Tarasova SU (2005) Unconscious operant conditioning in the paradigm of brain-computer interface based on color perception. Int J Neurosci 115: 781-802. doi:10.1080/00207450590881975. PubMed: 16019574.
[5]  Mak JN, Arbel Y, Minett JW, McCane LM, Yuksel B et al. (2011) Optimizing the P300-based brain-computer interface: current status, limitations and future directions. J Neural Eng 8: 025003. doi:10.1088/1741-2560/8/2/025003. PubMed: 21436525.
[6]  Farwell LA, Donchin E (1988) Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70: 510-523. doi:10.1016/0013-4694(88)90149-6. PubMed: 2461285.
[7]  Guger C, Daban S, Sellers E, Holzner C, Krausz G et al. (2009) How many people are able to control a P300-based brain-computer interface (BCI)?. Neurosci Lett 462: 94-98. doi:10.1016/j.neulet.2009.06.045. PubMed: 19545601.
[8]  Kaplan AY, Shishkin SL, Ganin IP, Basyul IA, Zhigalov AY (2013) Adapting the P300 based brain-computer interface for gaming: a review. IEEE Trans Comput Intel AI in Games. 5: 141-149.
[9]  Bayliss JD (2003) Use of the evoked potential P3 component for control in a virtual apartment. IEEE Trans Neural. Syst Rehabil Eng 11: 113-116. doi:10.1109/TNSRE.2003.814438. PubMed: 12899249.
[10]  Donnerer M, Steed A (2010) Using a P300 brain-computer interface in an immersive virtual environment. Presence. 19: 12-24. doi:10.1162/pres.19.1.12.
[11]  Yuksel BF, Donnerer M, Tompkin J, Steed A (2011) Novel P300 BCI interfaces to directly select physical and virtual objects. In: Proc. 5th Int. BCI Conf. 2011. (Austria: Graz University of Technology 22-24 September 2011) . . Graz: Verlag der Technischen Universit?t . Pp. 288-291.
[12]  Yuksel B, Donnerer M, Tompkin J, Steed A (2010) Using a P300 brain-computer interface in an immersive virtual environment. In: Proc. CHI 2010 (Atlanta, 10-15 April 2010). pp. 855-858.
[13]  Shishkin SL, Ganin IP, Kaplan AY (2011) Event-related potentials in a moving matrix modification of the P300 brain-computer interface paradigm. Neurosci Lett 496: 95-99. doi:10.1016/j.neulet.2011.03.089. PubMed: 21511006.
[14]  Congedo M, Goyat M, Tarrin N, Ionescu G, Varnet L et al. (2011) 'Brain Invaders': a prototype of an open-source P300-based video game working with the OpenViBE platform In: Proc. 5th Int. BCI Conf 2011 (Austria: Graz University of Technology 22-24 September 2011). Graz: Verlag der Technischen Universit?t . pp. 280-283.
[15]  Rebsamen B, Guan C, Zhang H, Wang C, Teo C et al. (2010) A brain controlled wheelchair to navigate in familiar environments. IEEE Trans Neural Syst Rehabil Eng 18: 590-598. doi:10.1109/TNSRE.2010.2049862. PubMed: 20460212.
[16]  Guan J, Chen Y, Lin J,?Yuan Y,?Huang M (2005) N2 components as features for brain computer interface. In: Proc. 2005 1st Int. . Conf. on Neural Interface and Control (26-28 May 2005). Pp 45-49.
[17]  Guo F, Hong B, Gao X, Gao S (2008) A brain-computer interface using motion-onset visual evoked potential. J Neural Eng 5: 477-485. doi:10.1088/1741-2560/5/4/011. PubMed: 19015582.
[18]  Hong B, Guo F, Liu T, Gao X, Gao S (2009) N200-speller using motion-onset visual response. Clin Neurophysiol 120: 1658-1666. doi:10.1016/j.clinph.2009.06.026. PubMed: 19640783.
[19]  Liu T, Goldberg L, Gao S, Hong B (2010) An online brain-computer interface using non-flashing visual evoked potentials. J Neural Eng 7: 036003. doi:10.1088/1741-2560/7/3/036003. PubMed: 20404396.
[20]  Jin J, Allison BZ, Wang X, Neuper C (2012) A combined brain-computer interface based on P300 potentials and motion-onset visual evoked potentials. J Neurosci Methods. 205: 265-276. doi:10.1016/j.jneumeth.2012.01.004. PubMed: 22269596.
[21]  Jin J, Allison BZ, Kaufmann T, Kübler A, Zhang Y et al. (2012) The changing face of P300 BCIs: A comparison of stimulus changes in a P300 BCI involving faces, emotion, and movement. PLOS ONE 7: e49688. doi:10.1371/journal.pone.0049688. PubMed: 23189154.
[22]  Zhang D, Song H, Xu R, Zhou W, Ling Z, Hong B (2013) Toward a minimally invasive brain-computer interface using a single subdural channel: A visual speller study. NeuroImage. 71: 30-41. doi:10.1016/j.neuroimage.2012.12.069. PubMed: 23313779.
[23]  Allison BZ, Pineda JA (2003) ERPs evoked by different matrix sizes: implications for a brain computer interface (BCI) system. IEEE Trans Neural Syst Rehabil Eng 11: 110-113. doi:10.1109/TNSRE.2003.814448. PubMed: 12899248.
[24]  Allison BZ, Pineda JA (2006) Effects of SOA and flash pattern manipulations on ERPs, performance, and preference: implications for a BCI system. Int J Psychophysiol 59: 127-140. doi:10.1016/j.ijpsycho.2005.02.007. PubMed: 16054256.
[25]  Krusienski DJ, Sellers EW, McFarland DJ, Vaughan TM, Wolpaw JR (2008) Toward enhanced P300 speller performance. J Neurosci Methods. 167: 15–21. doi:10.1016/j.jneumeth.2007.07.017. PubMed: 17822777.
[26]  Hoffmann U, Vesin JM, Ebrahimi T, Diserens K (2008) An efficient P300-based brain-computer interface for disabled subjects. J Neurosci Methods. 167: 115-125. doi:10.1016/j.jneumeth.2007.03.005. PubMed: 17445904.
[27]  Shishkin SL, Ganin IP, Basyul IA, Zhigalov AY, Kaplan AY (2009) N1 wave in the P300 BCI is not sensitive to the physical characteristics of stimuli. J Integr Neurosci 8: 471-485. doi:10.1142/S0219635209002320. PubMed: 20205299.
[28]  Bianchi L, Sami S, Hillebrand A, Fawcett IP, Quitadamo LR, Seri S (2010) Which physiological components are more suitable for visual ERP based brain-computer interface? A preliminary MEG/EEG study. Brain Topogr 23: 180-185. doi:10.1007/s10548-010-0143-0. PubMed: 20405196.
[29]  Treder MS, Blankertz B (2010) (C)overt attention and visual speller design in an ERP-based brain-computer interface. Behav Brain Funct 6: 28. doi:10.1186/1744-9081-6-28. PubMed: 20509913.
[30]  Sellers EW, Donchin E (2006) A P300-based brain–computer interface: initial tests by ALS patients. Clin Neurophysiol 117: 538-548. doi:10.1016/j.clinph.2005.06.027. PubMed: 16461003.
[31]  Acqualagna L, Blankertz B (2011) The rapid serial visual presentation paradigm tested online in a brain-computer interface speller. In: Proc. 5th Int. BCI Conf. 2011. (Austria: Graz University of Technology 22-24 September 2011) . . Graz: Verlag der Technischen Universit?t . Pp. 236-239.
[32]  Townsend G, LaPallo BK, Boulay CB, Krusienski DJ, Frye GE et al. (2010) A novel P300-based brain-computer interface stimulus presentation paradigm: moving beyond rows and columns. Clin Neurophysiol 121: 1109-1120. doi:10.1016/j.clinph.2010.01.030. PubMed: 20347387.
[33]  Frye GE, Hauser CK, Townsend G, Sellers EW (2011) Suppressing flashes of items surrounding targets during calibration of a P300-based brain-computer interface improves performance. J Neural Eng 8(2): 025024. doi:10.1088/1741-2560/8/2/025024. PubMed: 21436528.
[34]  Townsend G, Shanahan J, Ryan DB, Sellers EW (2012) A general P300 brain-computer interface presentation paradigm based on performance guided constraints. Neurosci Lett 531(2): 63-68. doi:10.1016/j.neulet.2012.08.041. PubMed: 22960261.
[35]  Bensch M, Karim AA, Mellinger J, Hinterberger T, Tangermann M et al. (2007) Nessi: an EEG-controlled web browser for severely paralyzed patients. Comput Intell Neurosci 71863: 71863. PubMed: 18350132.
[36]  Mugler EM, Ruf CA, Halder S, Bensch M, Kubler A (2010) Design and implementation of a P300-based brain-computer interface for controlling an internet browser. IEEE Trans Neural Syst Rehabil Eng 18: 599-609. doi:10.1109/TNSRE.2010.2068059. PubMed: 20805058.
[37]  Yu T, Li Y, Long J, Gu Z (2012) Surfing the internet with a BCI mouse. J Neural Eng 9: 036012. doi:10.1088/1741-2560/9/3/036012. PubMed: 22626911.
[38]  Finke A, Lenhardt A, Ritter H (2009) The MindGame: a P300-based brain-computer interface game. Neural Netw 22: 1329-1333. doi:10.1016/j.neunet.2009.07.003. PubMed: 19635654.
[39]  Kaplan AJ, Logachev SV (2009). atent RU 2406554.
[40]  Pires G, Castelo-Branco M, Nunes U (2008) Visual P300-based BCI to steer a wheelchair: a Bayesian approach. Conf. Proc. IEEE Eng. Med. Biol. Soc. (EMBS 2008) . Pp. 658-661.
[41]  Long J, Li Y, Wang H, Yu T, Pan J, Li F (2012) A hybrid brain computer interface to control the direction and speed of a simulated or real wheelchair. IEEE Trans Neural Syst Rehabil Eng 20: 720-729. doi:10.1109/TNSRE.2012.2197221. PubMed: 22692936.
[42]  Bell CJ, Shenoy P, Chalodhorn R, Rao RP (2008) Control of a humanoid robot by a noninvasive brain–computer interface in humans. J Neural Eng 5: 214-220. doi:10.1088/1741-2560/5/2/012. PubMed: 18483450.
[43]  Tonin L; Menegatti E, Cavinato M, D’Avanzo C, Pirini M et al. (2009) Evaluation of a robot as embodied interface for brain computer interface systems. Int J Bioelectromagnetism 11: 97-104.
[44]  Finke A, Knoblauch A, Hachmeister N, Riechmann H, Koesling H, Ritter H (2011) BCI-supported humanoid robots as semi-autonomous personal assistants. In: Proc. 2011 Int. UKIERI Workshop on Fusion of Brain-Computer Interface and Assistive Robotics. (BCI-AR 2011) . . Derry, UK: Institute of Electrical and Electronics Engineers . P. 16.
[45]  Escolano C, Antelis JM, Minguez J (2011) A telepresence mobile robot controlled with a noninvasive brain-computer interface. IEEE Trans Syst Man Cybern B. 42: 793-804.
[46]  Guan C, Thulasidas M, Wu J (2004) High performance P300 speller for brain-computer interface. In: Proc. IEEE Int. Workshop on Biomedical Circuits and Systems (Marina Mandarin Hotel, Singapore, 1-3 December 2004).
[47]  Bayliss JD, Ballard DH (2000) A virtual reality testbed for brain-computer interface research. IEEE Trans Rehabil Eng 8: 188-190. doi:10.1109/86.847811. PubMed: 10896182.
[48]  Treder MS, Schmidt NM, Blankertz B (2011) Gaze-independent brain-computer interfaces based on covert attention and feature attention. J Neural Eng 8: 066003. doi:10.1088/1741-2560/8/6/066003. PubMed: 21975312.
[49]  Fazel-Rezai R, Abhari K (2009) A region-based P300 speller for brain-computer interface. Can J Electr Comput Eng. 34: 81-85. doi:10.1109/CJECE.2009.5443854.
[50]  Pires G, Nunes U, Castelo-Branco M (2012) Comparison of a row-column speller vs. a novel lateral single-character speller: assessment of BCI for severe motor disabled patients. Clin Neurophysiol 123: 1168-1181. doi:10.1016/j.clinph.2011.10.040. PubMed: 22244868.
[51]  Mühl C, Gürk?k H, Plass-Oude Bos D, Thurlings ME, Scherffig L et al. (2009) Bacteria Hunt: A multimodal, multiparadigm BCI game. Bacteria Hunt: A multimodal, multiparadigm BCI game. Fifth Int Summer Workshop Multimodal Interfaces ENTERFACE'09 (13 July, Genua, Italy). pp. 41-62.
[52]  Hakvoort G (2011) Immersion and affect in a brain-computer interface game. Master Thesis, University of Twente. Available: . Accessed 23 June 2013.
[53]  Hillyard SA, Anllo-Vento L (1998) Event-related brain potentials in the study of visual selective attention. Proc Natl Acad Sci U S A 95: 781-787. doi:10.1073/pnas.95.3.781. PubMed: 9448241.
[54]  Luck SJ (2005) An Introduction to the Event-Related Potential Technique. Cambridge, MA: MIT Press. 388 pp.
[55]  Frenzel S, Neubert E (2010) s the P300 speller independent? arXiv:1006.3688v1.
[56]  Brunner P, Joshi S, Briskin S, Wolpaw JR, Bischof H, Schalk G (2010) Does the ‘P300’ speller depend on eye gaze? J Neural Eng 7: 056013. doi:10.1088/1741-2560/7/5/056013. PubMed: 20858924.
[57]  Lencer R, Trillenberg P (2008) Neurophysiology and neuroanatomy of smooth pursuit in humans. Brain Cogn 68: 219-228. doi:10.1016/j.bandc.2008.08.013. PubMed: 18835076.
[58]  Schütz AC, Braun DI, Gegenfurtner KR (2011) Eye movements and perception: A selective review. J Vis. 11: 1-30. doi:10.1167/11.3.1. PubMed: 21917784.
[59]  Pylyshyn ZW, Storm RW (1988) Tracking multiple independent targets: evidence for a parallel tracking mechanism. Spat Vis 3: 179-197. doi:10.1163/156856888X00122. PubMed: 3153671.
[60]  Onose G, Grozea C, Anghelescu A, Daia C, Sinescu CJ et al. (2012) On the feasibility of using motor imagery EEG-based brain–computer interface in chronic tetraplegics for assistive robotic arm control: a clinical test and long-term post-trial follow-up. Spinal Cord. 50: 599-608. doi:10.1038/sc.2012.14. PubMed: 22410845.
[61]  Frisoli A, Loconsole C, Leonardis D, Banno F, Barsotti M et al. (2012) A new gaze-BCI-driven control of an upper limb exoskeleton for rehabilitation in real-world tasks. IEEE Trans Syst Man Cybern C. 42: 1169-1179. doi:10.1109/TSMCB.2012.2187891.
[62]  Kramer AF, Wickens CD, Donchin E (1983) An analysis of the processing requirements of a complex perceptual-motor task. Hum Factors. 25: 597-621. PubMed: 6671646.
[63]  Kok A (2001) On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology. 38: 557-577. doi:10.1017/S0048577201990559. PubMed: 11352145.
[64]  Wickens C, Kramer A, Vanasse L, Donchin E (1983) Performance of concurrent tasks: a psychophysiological analysis of the reciprocity of information-processing resources. Science. 221: 1080-1082. doi:10.1126/science.6879207. PubMed: 6879207.
[65]  Donchin E, Cohen L (1967) Averaged evoked potentials and intramodality selective attention. Electroencephalogr Clin Neurophysiol 22: 537-546. doi:10.1016/0013-4694(67)90061-2. PubMed: 4164967.
[66]  Lovejoy LP, Fowler GA, Krauzlis RJ (2009) Spatial allocation of attention during smooth pursuit eye movements. Vision Res 49: 1275-1285. doi:10.1016/j.visres.2009.01.011. PubMed: 19533852.
[67]  Heinen SJ, Jin Z, Watamaniuk SN (2011) Flexibility of foveal attention during ocular pursuit. J Vis 11: 1-12. doi:10.1167/11.3.1. PubMed: 21310885.
[68]  Nijholt A, Reuderink B, Plass-Oude Bos D (2009) Turning shortcomings into challenges: brain–computer interfaces for games. Entertainment Computing. 1: 85–94. doi:10.1016/j.entcom.2009.09.007.
[69]  Groenegress C, Holzner C, Guger C, Slater M (2010) Effects of P300-based BCI use on reported presence in a virtual environment. Presence. 19: 1-11. doi:10.1162/pres.19.1.1.
[70]  Perez-Marcos D, Slater M, Sanchez-Vives MV (2009) Inducing a virtual hand ownership illusion through a brain–computer interface. Neuroreport. 20: 589-594. doi:10.1097/WNR.0b013e32832a0a2a. PubMed: 19938302.
[71]  Cinel C, Poli R, Citi L (2004) Possible sources of perceptual errors in P300-based speller paradigm. BioMedizinische Tech. 49: 39-40.
[72]  Fazel-Rezai R (2007) Human error in P300 speller paradigm for brain-computer interface. In: Conf. Proc. IEEE Eng. Med. Biol. Soc. (EMBS 2007) Pp. 2516-2519. PubMed : 18002506.
[73]  Fard MM, Pineau J, Martens SMM, Bie?mann F, Sch?lkopf B (2009) MDPs with Non-Deterministic Policies. In: MM Fard. Adv Neural Inf Process Syst, vol. 21: 1065–1073; (Proc (2008) Annual Conf. Nips Vancouver Whistler, 8-11 December. NIPS Foundation . pp. 665-672.
[74]  Martens SM, Hill NJ, Farquhar J, Sch?lkopf B (2009) Overlap and refractory effects in a brain–computer interface speller based on the visual P300 event-related potential. J Neural Eng 6: 026003. doi:10.1088/1741-2560/6/2/026003. PubMed: 19255462.
[75]  Salvaris M, Sepulveda F (2009) Visual modifications on the P300 speller BCI paradigm. J Neural Eng 6: 046011. doi:10.1088/1741-2560/6/4/046011. PubMed: 19602731.
[76]  Citi L, Poli R, Cinel C (2010) Documenting, modelling and exploiting P300 amplitude changes due to variable target delays in Donchin's speller. J Neural Eng 7: 056006. doi:10.1088/1741-2560/7/5/056006. PubMed: 20811092.
[77]  Jin J, Allison BZ, Sellers EW, Brunner C, Horki P et al. (2011) An adaptive P300-based control system. J Neural Eng 8: 036006. doi:10.1088/1741-2560/8/3/036006. PubMed: 21474877.
[78]  Kleih SC, Nijboer F, Halder S, Kübler A (2010) Motivation modulates the P300 amplitude during brain-computer interface use. Clin Neurophysiol 121: 1023-1031. doi:10.1016/j.clinph.2010.01.034. PubMed: 20188627.
[79]  Eskandari P, Erfanian A (2008) Improving the performance of brain-computer interface through meditation practicing. Conf Proc IEEE Eng Med Biol Soc., 2008: 662-665. PubMed: 19162742.
[80]  Lakey CE, Berry DR, Sellers EW (2011) Manipulating attention via mindfulness induction improves P300-based brain-computer interface performance. J Neural Eng 8: 025019. doi:10.1088/1741-2560/8/2/025019. PubMed: 21436516.
[81]  Datta A, Cusack R, Hawkins K, Heutink J, Rorden C et al. (2007) The P300 as a marker of waning attention and error propensity. Comput Intell Neurosci 93968: 93968. PubMed: 18301718.
[82]  Roger M, Galand G (1981) Operant conditioning of visual evoked potentials in man. Psychophysiology. 18: 477-482. doi:10.1111/j.1469-8986.1981.tb02485.x. PubMed: 7267932.
[83]  Sommer W, Schweinberger S (1992) Operant conditioning of P300. Biol Psychol 33: 37-49. doi:10.1016/0301-0511(92)90004-E. PubMed: 1599998.
[84]  Michalski A (1999) Feedback processing as parallel task in P300 conditioning. Acta Neurobiol Exp (Wars). 59: 123-130. PubMed: 10497817.
[85]  Smallwood J, Schooler JW (2006) The restless mind. Psychol Bull 132: 946-958. doi:10.1037/0033-2909.132.6.946. PubMed: 17073528.
[86]  Sellers EW, Vaughan TM, Wolpaw JR (2010) A brain-computer interface for long-term independent home use. Amyotroph Lateral Scler 11: 449-455. doi:10.3109/17482961003777470. PubMed: 20583947.
[87]  Ganin IP, Shishkin SL, Kaplan AY (2011) A P300 BCI with stimuli presented on moving objects. In: Proc. 5th Int. BCI Conf. 2011. (Austria: Graz University of Technology 22-24 September 2011) . . Graz: Verlag der Technischen Universit?t . pp. 308-311.
[88]  Ganin IP, Shishkin SL, Kochetova AG, Kaplan Aya (2012) P300-based brain-computer interface: the effect of the stimulus position in a stimulus train. Hum Physiol. 38: 121-128. doi:10.1134/S0362119712020041.
[89]  Silvoni S; Mellinger J (2011) Brain-computer interface and ERP recordings: a close look on trigger signal. In: Proc. 5th Int. BCI Conf; (2011). (Graz University of Technology, Austria, 22-24 September: 2011) . . Graz: Verlag der Technischen Universit?t . pp. 324-327.
[90]  Zhang H, Guan C, Wang C (2008) Asynchronous P300-based brain-computer interfaces: a computational approach with statistical models. IEEE Trans Biomed Eng 55: 1754-1763. doi:10.1109/TBME.2008.919128. PubMed: 18714840.
[91]  Aloise F, Schettini F, Aricò P, Leotta F, Salinari S et al. (2011) P300-based brain-computer interface for environmental control: an asynchronous approach. J Neural Eng 8: 025025. doi:10.1088/1741-2560/8/2/025025. PubMed: 21436520.
[92]  Gonsalvez CL, Polich J (2002) P300 amplitude is determined by target-to-target interval. Psychophysiology. 39: 388-396. doi:10.1017/S0048577201393137. PubMed: 12212658.
[93]  Nittono H, Fukushima M, Yano A, Moriya H (2012) The power of kawaii: Viewing cute images promotes a careful behavior and narrows attentional focus. PLOS ONE. 7: e46362. doi:10.1371/journal.pone.0046362. PubMed: 23050022.
[94]  Lisberger SG, Morris EJ, Tychsen L (1987) Visual motion processing and sensory-motor integration for smooth pursuit eye movements. Ann Rev Nellrosci. 10: 97-129. PubMed: 3551767.
[95]  Khurana B, Kowler E (1987) Shared attentional control of smooth eye movement and perception. Vision Res 27: 1603-1618. doi:10.1016/0042-6989(87)90168-4. PubMed: 3445492.
[96]  Suchow JW, Alvarez GA (2011) Motion silences awareness of visual change. Curr Biol 21: 140-143. doi:10.1016/j.cub.2010.12.019. PubMed: 21215632.
[97]  van Donkelaar P, Drew AS (2002) The allocation of attention during smooth pursuit eye movements. In: Hy?n? J et al., editors Progr in Brain Res, vol 140. . Amsterdam: Elsevier . Pp 267-277. PubMed : 12508596.
[98]  Khan AZ, Lefèvre P, Heinen SJ, Blohm G (2010) The default allocation of attention is broadly ahead of smooth pursuit. J Vis 10: 7. doi:10.1167/10.13.7. PubMed: 21071574.
[99]  Engbert R, Mergenthaler K (2006) Microsaccades are triggered by low retinal image slip. Proc Natl Acad Sci USA. 103: 7192-7197. doi:10.1073/pnas.0509557103. PubMed: 16632611.
[100]  Bieger J, Molina GG (2010) Light stimulation properties to influence brain activity: a brain-computer interface application. Technical note TN-2010-00315. Koninklijke Philips Electron N.V. Available: . . Accessed. 21 June 2013.
[101]  Hawkins GE, Rae B, Nesbitt KV, Brown SD (2012) Gamelike features might not improve data. Behav Res Methods. doi:10.3758/s13428-012-0264-3.
[102]  Aricó P, Aloise F, Schettini F, Salinari S, Santostasi S et al. (2011) On the effect of ERPs-based BCI practice on user's performances. Proc. In: Proc. 5th Int. . BCI Conf. 2011. (Austria: Graz University of Technology 22-24 September 2011) . . Graz: Verlag der Technischen Universit?t . Pp. 240-243.
[103]  Sekuler R, Ball K (1977) Mental set alters visibility of moving targets. Science. 198: 60-62. doi:10.1126/science.897682. PubMed: 897682.
[104]  Beer AL, R?der B (2004) Attention to motion enhances processing of both visual and auditory stimuli: an event-related potential study. Brain Res. Cogn Brain Res 18: 205-225. doi:10.1016/j.cogbrainres.2003.10.004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133