[1] | Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain-computer interfaces for communication and control. Clin Neurophysiol 113: 767-791. doi:10.1016/S1388-2457(02)00057-3. PubMed: 12048038.
|
[2] | Plass-Oude Bos D, Reuderink B, van de Laar B, Gürk?k H, Mühl C et al. (2010) Brain-computer interfacing and games. In: DS TanA. Nijholt. Brain-Computer Interfaces. London: Springer Verlag. pp. 149-178.
|
[3] | Wolpaw JR (2007) Brain-computer interfaces as new brain output pathways. J Physiol 579: 613-619. doi:10.1113/jphysiol.2006.125948. PubMed: 17255164.
|
[4] | Kaplan AY, Lim JJ, Jin KS, Park BW, Byeon JG, Tarasova SU (2005) Unconscious operant conditioning in the paradigm of brain-computer interface based on color perception. Int J Neurosci 115: 781-802. doi:10.1080/00207450590881975. PubMed: 16019574.
|
[5] | Mak JN, Arbel Y, Minett JW, McCane LM, Yuksel B et al. (2011) Optimizing the P300-based brain-computer interface: current status, limitations and future directions. J Neural Eng 8: 025003. doi:10.1088/1741-2560/8/2/025003. PubMed: 21436525.
|
[6] | Farwell LA, Donchin E (1988) Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70: 510-523. doi:10.1016/0013-4694(88)90149-6. PubMed: 2461285.
|
[7] | Guger C, Daban S, Sellers E, Holzner C, Krausz G et al. (2009) How many people are able to control a P300-based brain-computer interface (BCI)?. Neurosci Lett 462: 94-98. doi:10.1016/j.neulet.2009.06.045. PubMed: 19545601.
|
[8] | Kaplan AY, Shishkin SL, Ganin IP, Basyul IA, Zhigalov AY (2013) Adapting the P300 based brain-computer interface for gaming: a review. IEEE Trans Comput Intel AI in Games. 5: 141-149.
|
[9] | Bayliss JD (2003) Use of the evoked potential P3 component for control in a virtual apartment. IEEE Trans Neural. Syst Rehabil Eng 11: 113-116. doi:10.1109/TNSRE.2003.814438. PubMed: 12899249.
|
[10] | Donnerer M, Steed A (2010) Using a P300 brain-computer interface in an immersive virtual environment. Presence. 19: 12-24. doi:10.1162/pres.19.1.12.
|
[11] | Yuksel BF, Donnerer M, Tompkin J, Steed A (2011) Novel P300 BCI interfaces to directly select physical and virtual objects. In: Proc. 5th Int. BCI Conf. 2011. (Austria: Graz University of Technology 22-24 September 2011) . . Graz: Verlag der Technischen Universit?t . Pp. 288-291.
|
[12] | Yuksel B, Donnerer M, Tompkin J, Steed A (2010) Using a P300 brain-computer interface in an immersive virtual environment. In: Proc. CHI 2010 (Atlanta, 10-15 April 2010). pp. 855-858.
|
[13] | Shishkin SL, Ganin IP, Kaplan AY (2011) Event-related potentials in a moving matrix modification of the P300 brain-computer interface paradigm. Neurosci Lett 496: 95-99. doi:10.1016/j.neulet.2011.03.089. PubMed: 21511006.
|
[14] | Congedo M, Goyat M, Tarrin N, Ionescu G, Varnet L et al. (2011) 'Brain Invaders': a prototype of an open-source P300-based video game working with the OpenViBE platform In: Proc. 5th Int. BCI Conf 2011 (Austria: Graz University of Technology 22-24 September 2011). Graz: Verlag der Technischen Universit?t . pp. 280-283.
|
[15] | Rebsamen B, Guan C, Zhang H, Wang C, Teo C et al. (2010) A brain controlled wheelchair to navigate in familiar environments. IEEE Trans Neural Syst Rehabil Eng 18: 590-598. doi:10.1109/TNSRE.2010.2049862. PubMed: 20460212.
|
[16] | Guan J, Chen Y, Lin J,?Yuan Y,?Huang M (2005) N2 components as features for brain computer interface. In: Proc. 2005 1st Int. . Conf. on Neural Interface and Control (26-28 May 2005). Pp 45-49.
|
[17] | Guo F, Hong B, Gao X, Gao S (2008) A brain-computer interface using motion-onset visual evoked potential. J Neural Eng 5: 477-485. doi:10.1088/1741-2560/5/4/011. PubMed: 19015582.
|
[18] | Hong B, Guo F, Liu T, Gao X, Gao S (2009) N200-speller using motion-onset visual response. Clin Neurophysiol 120: 1658-1666. doi:10.1016/j.clinph.2009.06.026. PubMed: 19640783.
|
[19] | Liu T, Goldberg L, Gao S, Hong B (2010) An online brain-computer interface using non-flashing visual evoked potentials. J Neural Eng 7: 036003. doi:10.1088/1741-2560/7/3/036003. PubMed: 20404396.
|
[20] | Jin J, Allison BZ, Wang X, Neuper C (2012) A combined brain-computer interface based on P300 potentials and motion-onset visual evoked potentials. J Neurosci Methods. 205: 265-276. doi:10.1016/j.jneumeth.2012.01.004. PubMed: 22269596.
|
[21] | Jin J, Allison BZ, Kaufmann T, Kübler A, Zhang Y et al. (2012) The changing face of P300 BCIs: A comparison of stimulus changes in a P300 BCI involving faces, emotion, and movement. PLOS ONE 7: e49688. doi:10.1371/journal.pone.0049688. PubMed: 23189154.
|
[22] | Zhang D, Song H, Xu R, Zhou W, Ling Z, Hong B (2013) Toward a minimally invasive brain-computer interface using a single subdural channel: A visual speller study. NeuroImage. 71: 30-41. doi:10.1016/j.neuroimage.2012.12.069. PubMed: 23313779.
|
[23] | Allison BZ, Pineda JA (2003) ERPs evoked by different matrix sizes: implications for a brain computer interface (BCI) system. IEEE Trans Neural Syst Rehabil Eng 11: 110-113. doi:10.1109/TNSRE.2003.814448. PubMed: 12899248.
|
[24] | Allison BZ, Pineda JA (2006) Effects of SOA and flash pattern manipulations on ERPs, performance, and preference: implications for a BCI system. Int J Psychophysiol 59: 127-140. doi:10.1016/j.ijpsycho.2005.02.007. PubMed: 16054256.
|
[25] | Krusienski DJ, Sellers EW, McFarland DJ, Vaughan TM, Wolpaw JR (2008) Toward enhanced P300 speller performance. J Neurosci Methods. 167: 15–21. doi:10.1016/j.jneumeth.2007.07.017. PubMed: 17822777.
|
[26] | Hoffmann U, Vesin JM, Ebrahimi T, Diserens K (2008) An efficient P300-based brain-computer interface for disabled subjects. J Neurosci Methods. 167: 115-125. doi:10.1016/j.jneumeth.2007.03.005. PubMed: 17445904.
|
[27] | Shishkin SL, Ganin IP, Basyul IA, Zhigalov AY, Kaplan AY (2009) N1 wave in the P300 BCI is not sensitive to the physical characteristics of stimuli. J Integr Neurosci 8: 471-485. doi:10.1142/S0219635209002320. PubMed: 20205299.
|
[28] | Bianchi L, Sami S, Hillebrand A, Fawcett IP, Quitadamo LR, Seri S (2010) Which physiological components are more suitable for visual ERP based brain-computer interface? A preliminary MEG/EEG study. Brain Topogr 23: 180-185. doi:10.1007/s10548-010-0143-0. PubMed: 20405196.
|
[29] | Treder MS, Blankertz B (2010) (C)overt attention and visual speller design in an ERP-based brain-computer interface. Behav Brain Funct 6: 28. doi:10.1186/1744-9081-6-28. PubMed: 20509913.
|
[30] | Sellers EW, Donchin E (2006) A P300-based brain–computer interface: initial tests by ALS patients. Clin Neurophysiol 117: 538-548. doi:10.1016/j.clinph.2005.06.027. PubMed: 16461003.
|
[31] | Acqualagna L, Blankertz B (2011) The rapid serial visual presentation paradigm tested online in a brain-computer interface speller. In: Proc. 5th Int. BCI Conf. 2011. (Austria: Graz University of Technology 22-24 September 2011) . . Graz: Verlag der Technischen Universit?t . Pp. 236-239.
|
[32] | Townsend G, LaPallo BK, Boulay CB, Krusienski DJ, Frye GE et al. (2010) A novel P300-based brain-computer interface stimulus presentation paradigm: moving beyond rows and columns. Clin Neurophysiol 121: 1109-1120. doi:10.1016/j.clinph.2010.01.030. PubMed: 20347387.
|
[33] | Frye GE, Hauser CK, Townsend G, Sellers EW (2011) Suppressing flashes of items surrounding targets during calibration of a P300-based brain-computer interface improves performance. J Neural Eng 8(2): 025024. doi:10.1088/1741-2560/8/2/025024. PubMed: 21436528.
|
[34] | Townsend G, Shanahan J, Ryan DB, Sellers EW (2012) A general P300 brain-computer interface presentation paradigm based on performance guided constraints. Neurosci Lett 531(2): 63-68. doi:10.1016/j.neulet.2012.08.041. PubMed: 22960261.
|
[35] | Bensch M, Karim AA, Mellinger J, Hinterberger T, Tangermann M et al. (2007) Nessi: an EEG-controlled web browser for severely paralyzed patients. Comput Intell Neurosci 71863: 71863. PubMed: 18350132.
|
[36] | Mugler EM, Ruf CA, Halder S, Bensch M, Kubler A (2010) Design and implementation of a P300-based brain-computer interface for controlling an internet browser. IEEE Trans Neural Syst Rehabil Eng 18: 599-609. doi:10.1109/TNSRE.2010.2068059. PubMed: 20805058.
|
[37] | Yu T, Li Y, Long J, Gu Z (2012) Surfing the internet with a BCI mouse. J Neural Eng 9: 036012. doi:10.1088/1741-2560/9/3/036012. PubMed: 22626911.
|
[38] | Finke A, Lenhardt A, Ritter H (2009) The MindGame: a P300-based brain-computer interface game. Neural Netw 22: 1329-1333. doi:10.1016/j.neunet.2009.07.003. PubMed: 19635654.
|
[39] | Kaplan AJ, Logachev SV (2009). atent RU 2406554.
|
[40] | Pires G, Castelo-Branco M, Nunes U (2008) Visual P300-based BCI to steer a wheelchair: a Bayesian approach. Conf. Proc. IEEE Eng. Med. Biol. Soc. (EMBS 2008) . Pp. 658-661.
|
[41] | Long J, Li Y, Wang H, Yu T, Pan J, Li F (2012) A hybrid brain computer interface to control the direction and speed of a simulated or real wheelchair. IEEE Trans Neural Syst Rehabil Eng 20: 720-729. doi:10.1109/TNSRE.2012.2197221. PubMed: 22692936.
|
[42] | Bell CJ, Shenoy P, Chalodhorn R, Rao RP (2008) Control of a humanoid robot by a noninvasive brain–computer interface in humans. J Neural Eng 5: 214-220. doi:10.1088/1741-2560/5/2/012. PubMed: 18483450.
|
[43] | Tonin L; Menegatti E, Cavinato M, D’Avanzo C, Pirini M et al. (2009) Evaluation of a robot as embodied interface for brain computer interface systems. Int J Bioelectromagnetism 11: 97-104.
|
[44] | Finke A, Knoblauch A, Hachmeister N, Riechmann H, Koesling H, Ritter H (2011) BCI-supported humanoid robots as semi-autonomous personal assistants. In: Proc. 2011 Int. UKIERI Workshop on Fusion of Brain-Computer Interface and Assistive Robotics. (BCI-AR 2011) . . Derry, UK: Institute of Electrical and Electronics Engineers . P. 16.
|
[45] | Escolano C, Antelis JM, Minguez J (2011) A telepresence mobile robot controlled with a noninvasive brain-computer interface. IEEE Trans Syst Man Cybern B. 42: 793-804.
|
[46] | Guan C, Thulasidas M, Wu J (2004) High performance P300 speller for brain-computer interface. In: Proc. IEEE Int. Workshop on Biomedical Circuits and Systems (Marina Mandarin Hotel, Singapore, 1-3 December 2004).
|
[47] | Bayliss JD, Ballard DH (2000) A virtual reality testbed for brain-computer interface research. IEEE Trans Rehabil Eng 8: 188-190. doi:10.1109/86.847811. PubMed: 10896182.
|
[48] | Treder MS, Schmidt NM, Blankertz B (2011) Gaze-independent brain-computer interfaces based on covert attention and feature attention. J Neural Eng 8: 066003. doi:10.1088/1741-2560/8/6/066003. PubMed: 21975312.
|
[49] | Fazel-Rezai R, Abhari K (2009) A region-based P300 speller for brain-computer interface. Can J Electr Comput Eng. 34: 81-85. doi:10.1109/CJECE.2009.5443854.
|
[50] | Pires G, Nunes U, Castelo-Branco M (2012) Comparison of a row-column speller vs. a novel lateral single-character speller: assessment of BCI for severe motor disabled patients. Clin Neurophysiol 123: 1168-1181. doi:10.1016/j.clinph.2011.10.040. PubMed: 22244868.
|
[51] | Mühl C, Gürk?k H, Plass-Oude Bos D, Thurlings ME, Scherffig L et al. (2009) Bacteria Hunt: A multimodal, multiparadigm BCI game. Bacteria Hunt: A multimodal, multiparadigm BCI game. Fifth Int Summer Workshop Multimodal Interfaces ENTERFACE'09 (13 July, Genua, Italy). pp. 41-62.
|
[52] | Hakvoort G (2011) Immersion and affect in a brain-computer interface game. Master Thesis, University of Twente. Available: . Accessed 23 June 2013.
|
[53] | Hillyard SA, Anllo-Vento L (1998) Event-related brain potentials in the study of visual selective attention. Proc Natl Acad Sci U S A 95: 781-787. doi:10.1073/pnas.95.3.781. PubMed: 9448241.
|
[54] | Luck SJ (2005) An Introduction to the Event-Related Potential Technique. Cambridge, MA: MIT Press. 388 pp.
|
[55] | Frenzel S, Neubert E (2010) s the P300 speller independent? arXiv:1006.3688v1.
|
[56] | Brunner P, Joshi S, Briskin S, Wolpaw JR, Bischof H, Schalk G (2010) Does the ‘P300’ speller depend on eye gaze? J Neural Eng 7: 056013. doi:10.1088/1741-2560/7/5/056013. PubMed: 20858924.
|
[57] | Lencer R, Trillenberg P (2008) Neurophysiology and neuroanatomy of smooth pursuit in humans. Brain Cogn 68: 219-228. doi:10.1016/j.bandc.2008.08.013. PubMed: 18835076.
|
[58] | Schütz AC, Braun DI, Gegenfurtner KR (2011) Eye movements and perception: A selective review. J Vis. 11: 1-30. doi:10.1167/11.3.1. PubMed: 21917784.
|
[59] | Pylyshyn ZW, Storm RW (1988) Tracking multiple independent targets: evidence for a parallel tracking mechanism. Spat Vis 3: 179-197. doi:10.1163/156856888X00122. PubMed: 3153671.
|
[60] | Onose G, Grozea C, Anghelescu A, Daia C, Sinescu CJ et al. (2012) On the feasibility of using motor imagery EEG-based brain–computer interface in chronic tetraplegics for assistive robotic arm control: a clinical test and long-term post-trial follow-up. Spinal Cord. 50: 599-608. doi:10.1038/sc.2012.14. PubMed: 22410845.
|
[61] | Frisoli A, Loconsole C, Leonardis D, Banno F, Barsotti M et al. (2012) A new gaze-BCI-driven control of an upper limb exoskeleton for rehabilitation in real-world tasks. IEEE Trans Syst Man Cybern C. 42: 1169-1179. doi:10.1109/TSMCB.2012.2187891.
|
[62] | Kramer AF, Wickens CD, Donchin E (1983) An analysis of the processing requirements of a complex perceptual-motor task. Hum Factors. 25: 597-621. PubMed: 6671646.
|
[63] | Kok A (2001) On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology. 38: 557-577. doi:10.1017/S0048577201990559. PubMed: 11352145.
|
[64] | Wickens C, Kramer A, Vanasse L, Donchin E (1983) Performance of concurrent tasks: a psychophysiological analysis of the reciprocity of information-processing resources. Science. 221: 1080-1082. doi:10.1126/science.6879207. PubMed: 6879207.
|
[65] | Donchin E, Cohen L (1967) Averaged evoked potentials and intramodality selective attention. Electroencephalogr Clin Neurophysiol 22: 537-546. doi:10.1016/0013-4694(67)90061-2. PubMed: 4164967.
|
[66] | Lovejoy LP, Fowler GA, Krauzlis RJ (2009) Spatial allocation of attention during smooth pursuit eye movements. Vision Res 49: 1275-1285. doi:10.1016/j.visres.2009.01.011. PubMed: 19533852.
|
[67] | Heinen SJ, Jin Z, Watamaniuk SN (2011) Flexibility of foveal attention during ocular pursuit. J Vis 11: 1-12. doi:10.1167/11.3.1. PubMed: 21310885.
|
[68] | Nijholt A, Reuderink B, Plass-Oude Bos D (2009) Turning shortcomings into challenges: brain–computer interfaces for games. Entertainment Computing. 1: 85–94. doi:10.1016/j.entcom.2009.09.007.
|
[69] | Groenegress C, Holzner C, Guger C, Slater M (2010) Effects of P300-based BCI use on reported presence in a virtual environment. Presence. 19: 1-11. doi:10.1162/pres.19.1.1.
|
[70] | Perez-Marcos D, Slater M, Sanchez-Vives MV (2009) Inducing a virtual hand ownership illusion through a brain–computer interface. Neuroreport. 20: 589-594. doi:10.1097/WNR.0b013e32832a0a2a. PubMed: 19938302.
|
[71] | Cinel C, Poli R, Citi L (2004) Possible sources of perceptual errors in P300-based speller paradigm. BioMedizinische Tech. 49: 39-40.
|
[72] | Fazel-Rezai R (2007) Human error in P300 speller paradigm for brain-computer interface. In: Conf. Proc. IEEE Eng. Med. Biol. Soc. (EMBS 2007) Pp. 2516-2519. PubMed : 18002506.
|
[73] | Fard MM, Pineau J, Martens SMM, Bie?mann F, Sch?lkopf B (2009) MDPs with Non-Deterministic Policies. In: MM Fard. Adv Neural Inf Process Syst, vol. 21: 1065–1073; (Proc (2008) Annual Conf. Nips Vancouver Whistler, 8-11 December. NIPS Foundation . pp. 665-672.
|
[74] | Martens SM, Hill NJ, Farquhar J, Sch?lkopf B (2009) Overlap and refractory effects in a brain–computer interface speller based on the visual P300 event-related potential. J Neural Eng 6: 026003. doi:10.1088/1741-2560/6/2/026003. PubMed: 19255462.
|
[75] | Salvaris M, Sepulveda F (2009) Visual modifications on the P300 speller BCI paradigm. J Neural Eng 6: 046011. doi:10.1088/1741-2560/6/4/046011. PubMed: 19602731.
|
[76] | Citi L, Poli R, Cinel C (2010) Documenting, modelling and exploiting P300 amplitude changes due to variable target delays in Donchin's speller. J Neural Eng 7: 056006. doi:10.1088/1741-2560/7/5/056006. PubMed: 20811092.
|
[77] | Jin J, Allison BZ, Sellers EW, Brunner C, Horki P et al. (2011) An adaptive P300-based control system. J Neural Eng 8: 036006. doi:10.1088/1741-2560/8/3/036006. PubMed: 21474877.
|
[78] | Kleih SC, Nijboer F, Halder S, Kübler A (2010) Motivation modulates the P300 amplitude during brain-computer interface use. Clin Neurophysiol 121: 1023-1031. doi:10.1016/j.clinph.2010.01.034. PubMed: 20188627.
|
[79] | Eskandari P, Erfanian A (2008) Improving the performance of brain-computer interface through meditation practicing. Conf Proc IEEE Eng Med Biol Soc., 2008: 662-665. PubMed: 19162742.
|
[80] | Lakey CE, Berry DR, Sellers EW (2011) Manipulating attention via mindfulness induction improves P300-based brain-computer interface performance. J Neural Eng 8: 025019. doi:10.1088/1741-2560/8/2/025019. PubMed: 21436516.
|
[81] | Datta A, Cusack R, Hawkins K, Heutink J, Rorden C et al. (2007) The P300 as a marker of waning attention and error propensity. Comput Intell Neurosci 93968: 93968. PubMed: 18301718.
|
[82] | Roger M, Galand G (1981) Operant conditioning of visual evoked potentials in man. Psychophysiology. 18: 477-482. doi:10.1111/j.1469-8986.1981.tb02485.x. PubMed: 7267932.
|
[83] | Sommer W, Schweinberger S (1992) Operant conditioning of P300. Biol Psychol 33: 37-49. doi:10.1016/0301-0511(92)90004-E. PubMed: 1599998.
|
[84] | Michalski A (1999) Feedback processing as parallel task in P300 conditioning. Acta Neurobiol Exp (Wars). 59: 123-130. PubMed: 10497817.
|
[85] | Smallwood J, Schooler JW (2006) The restless mind. Psychol Bull 132: 946-958. doi:10.1037/0033-2909.132.6.946. PubMed: 17073528.
|
[86] | Sellers EW, Vaughan TM, Wolpaw JR (2010) A brain-computer interface for long-term independent home use. Amyotroph Lateral Scler 11: 449-455. doi:10.3109/17482961003777470. PubMed: 20583947.
|
[87] | Ganin IP, Shishkin SL, Kaplan AY (2011) A P300 BCI with stimuli presented on moving objects. In: Proc. 5th Int. BCI Conf. 2011. (Austria: Graz University of Technology 22-24 September 2011) . . Graz: Verlag der Technischen Universit?t . pp. 308-311.
|
[88] | Ganin IP, Shishkin SL, Kochetova AG, Kaplan Aya (2012) P300-based brain-computer interface: the effect of the stimulus position in a stimulus train. Hum Physiol. 38: 121-128. doi:10.1134/S0362119712020041.
|
[89] | Silvoni S; Mellinger J (2011) Brain-computer interface and ERP recordings: a close look on trigger signal. In: Proc. 5th Int. BCI Conf; (2011). (Graz University of Technology, Austria, 22-24 September: 2011) . . Graz: Verlag der Technischen Universit?t . pp. 324-327.
|
[90] | Zhang H, Guan C, Wang C (2008) Asynchronous P300-based brain-computer interfaces: a computational approach with statistical models. IEEE Trans Biomed Eng 55: 1754-1763. doi:10.1109/TBME.2008.919128. PubMed: 18714840.
|
[91] | Aloise F, Schettini F, Aricò P, Leotta F, Salinari S et al. (2011) P300-based brain-computer interface for environmental control: an asynchronous approach. J Neural Eng 8: 025025. doi:10.1088/1741-2560/8/2/025025. PubMed: 21436520.
|
[92] | Gonsalvez CL, Polich J (2002) P300 amplitude is determined by target-to-target interval. Psychophysiology. 39: 388-396. doi:10.1017/S0048577201393137. PubMed: 12212658.
|
[93] | Nittono H, Fukushima M, Yano A, Moriya H (2012) The power of kawaii: Viewing cute images promotes a careful behavior and narrows attentional focus. PLOS ONE. 7: e46362. doi:10.1371/journal.pone.0046362. PubMed: 23050022.
|
[94] | Lisberger SG, Morris EJ, Tychsen L (1987) Visual motion processing and sensory-motor integration for smooth pursuit eye movements. Ann Rev Nellrosci. 10: 97-129. PubMed: 3551767.
|
[95] | Khurana B, Kowler E (1987) Shared attentional control of smooth eye movement and perception. Vision Res 27: 1603-1618. doi:10.1016/0042-6989(87)90168-4. PubMed: 3445492.
|
[96] | Suchow JW, Alvarez GA (2011) Motion silences awareness of visual change. Curr Biol 21: 140-143. doi:10.1016/j.cub.2010.12.019. PubMed: 21215632.
|
[97] | van Donkelaar P, Drew AS (2002) The allocation of attention during smooth pursuit eye movements. In: Hy?n? J et al., editors Progr in Brain Res, vol 140. . Amsterdam: Elsevier . Pp 267-277. PubMed : 12508596.
|
[98] | Khan AZ, Lefèvre P, Heinen SJ, Blohm G (2010) The default allocation of attention is broadly ahead of smooth pursuit. J Vis 10: 7. doi:10.1167/10.13.7. PubMed: 21071574.
|
[99] | Engbert R, Mergenthaler K (2006) Microsaccades are triggered by low retinal image slip. Proc Natl Acad Sci USA. 103: 7192-7197. doi:10.1073/pnas.0509557103. PubMed: 16632611.
|
[100] | Bieger J, Molina GG (2010) Light stimulation properties to influence brain activity: a brain-computer interface application. Technical note TN-2010-00315. Koninklijke Philips Electron N.V. Available: . . Accessed. 21 June 2013.
|
[101] | Hawkins GE, Rae B, Nesbitt KV, Brown SD (2012) Gamelike features might not improve data. Behav Res Methods. doi:10.3758/s13428-012-0264-3.
|
[102] | Aricó P, Aloise F, Schettini F, Salinari S, Santostasi S et al. (2011) On the effect of ERPs-based BCI practice on user's performances. Proc. In: Proc. 5th Int. . BCI Conf. 2011. (Austria: Graz University of Technology 22-24 September 2011) . . Graz: Verlag der Technischen Universit?t . Pp. 240-243.
|
[103] | Sekuler R, Ball K (1977) Mental set alters visibility of moving targets. Science. 198: 60-62. doi:10.1126/science.897682. PubMed: 897682.
|
[104] | Beer AL, R?der B (2004) Attention to motion enhances processing of both visual and auditory stimuli: an event-related potential study. Brain Res. Cogn Brain Res 18: 205-225. doi:10.1016/j.cogbrainres.2003.10.004.
|