全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Detection of Salt Marsh Vegetation Stress and Recovery after the Deepwater Horizon Oil Spill in Barataria Bay, Gulf of Mexico Using AVIRIS Data

DOI: 10.1371/journal.pone.0078989

Full-Text   Cite this paper   Add to My Lib

Abstract:

The British Petroleum Deepwater Horizon Oil Spill in the Gulf of Mexico was the biggest oil spill in US history. To assess the impact of the oil spill on the saltmarsh plant community, we examined Advanced Visible Infrared Imaging Spectrometer (AVIRIS) data flown over Barataria Bay, Louisiana in September 2010 and August 2011. Oil contamination was mapped using oil absorption features in pixel spectra and used to examine impact of oil along the oiled shorelines. Results showed that vegetation stress was restricted to the tidal zone extending 14 m inland from the shoreline in September 2010. Four indexes of plant stress and three indexes of canopy water content all consistently showed that stress was highest in pixels next to the shoreline and decreased with increasing distance from the shoreline. Index values along the oiled shoreline were significantly lower than those along the oil-free shoreline. Regression of index values with respect to distance from oil showed that in 2011, index values were no longer correlated with proximity to oil suggesting that the marsh was on its way to recovery. Change detection between the two dates showed that areas denuded of vegetation after the oil impact experienced varying degrees of re-vegetation in the following year. This recovery was poorest in the first three pixels adjacent to the shoreline. This study illustrates the usefulness of high spatial resolution airborne imaging spectroscopy to map actual locations where oil from the spill reached the shore and then to assess its impacts on the plant community. We demonstrate that post-oiling trends in terms of plant health and mortality could be detected and monitored, including recovery of these saltmarsh meadows one year after the oil spill.

References

[1]  Ko J-Y, Day JW (2004) A review of ecological impacts of oil and gas development on coastal ecosystems in the Mississippi Delta. Ocean & Coastal Management 47: 597–623.
[2]  Gundlach ER, Hayes MO (1978) Vulnerability of coastal environments to oil spill impacts. Marine Technology Society Journal 12: 18–27.
[3]  Moss L (2010) The 13 largest oil spills in history. Mother Nature Network.
[4]  Mishra DR, Cho HJ, Ghosh S, Fox A, Downs C, et al. (2012) Post-spill state of the marsh: Remote estimation of the ecological impact of the Gulf of Mexico oil spill on Louisiana Salt Marshes. Remote Sensing of Environment 118: 176–185.
[5]  Kokaly RF, Couvillion BR, Holloway JM, Roberts DA, Ustin SL, et al. (2013) Spectroscopic remote sensing of the distribution and persistence of oil from the Deepwater Horizon spill in Barataria Bay marshes. Remote Sensing of Environment 129: 210–230.
[6]  DeLaune RD, Smith CJ, Patrick Jr WH, Fleeger JW, Tolley MD (1984) Effect of oil on salt marsh biota: Methods for restoration. Environmental Pollution Series A, Ecological and Biological 36: 207–227.
[7]  Hester MW, Mendelssohn IA (2000) Long-term recovery of a Louisiana brackish marsh plant community from oil-spill impact: vegetation response and mitigating effects of marsh surface elevation. Marine Environmental Research 49: 233–254.
[8]  Pezeshki SR, Hester MW, Lin Q, Nyman JA (2000) The effects of oil spill and clean-up on dominant US Gulf coast marsh macrophytes: a review. Environmental Pollution 108: 129–139.
[9]  Lin Q, Mendelssohn IA (1996) A comparative investigation of the effects of south Louisiana crude oil on the vegetation of fresh, brackish and salt marshes. Marine Pollution Bulletin 32: 202–209.
[10]  Mendelssohn IA, Hester MW, Sasser C, Fischel M (1990) The effect of a louisiana crude oil discharge from a pipeline break on the vegetation of a Southeast Louisiana brackish marsh. Oil and Chemical Pollution 7: 1–15.
[11]  Jackson JBC, Cubit JD, Keller BD, Batista V, Burns K, et al. (1989) Ecological effects of a major oil spill on Panamanian coastal marine communities. Science 243: 37–44.
[12]  DeLaune RD, Wright AL (2011) Projected impact of deepwater horizon oil spill on U.S. gulf coast wetlands. Soil Science Society of America Journal 75: 1602–1612.
[13]  Kenworthy WJ, Durako MJ, Fatemy SMR, Valavi H, Thayer GW (1993) Ecology of seagrasses in northeastern Saudi Arabia one year after the Gulf War oil spill. Marine Pollution Bulletin 27: 213–222.
[14]  Smith CJ, DeLaune RD, Patrick WH (1981) A method for determining stress in wetland plant communities following an oil spill. Environmental Pollution Series A, Ecological and Biological 26: 297–304.
[15]  Brekke C, Solberg AHS (2005) Oil spill detection by satellite remote sensing. Remote Sensing of Environment 95: 1–13.
[16]  Cross AM (1992) Monitoring marine oil pollution using AVHRR data: observation of the coast of Kuwait and Saudi Arabia during January 1991. International Journal of Remote Sensing 13: 781–788.
[17]  De Domenico L, Crisafi E, Magazzù G, Puglisi A, La Rosa A (1994) Monitoring of petroleum hydrocarbon pollution in surface waters by a direct comparison of fluorescence spectroscopy and remote sensing techniques. Marine Pollution Bulletin 28: 587–591.
[18]  Fingas MF, Brown CE (1997) Review of oil spill remote sensing. Spill Science & Technology Bulletin 4: 199–208.
[19]  Goodman R (1994) Overview and future trends in oil spill remote sensing. Spill Science & Technology Bulletin 1: 11–21.
[20]  Howari FM (2004) Investigation of hydrocarbon pollution in the vicinity of United Arab Emirates coasts using visible and near infrared remote sensing data. Journal of Coastal Research 20: 1089–1095.
[21]  Lin B, An J, Carl B, Zhang H (2004) Neural networks in detection and identification of littoral oil pollution by remote sensing. In: Yin F-L, Wang J, Guo C, editors. Advances in Neural Networks – ISNN 2004: Springer Berlin / Heidelberg. pp. 977–982.
[22]  Volckaert FAM, Kayens G, Schallier R, Jacques TG (2000) Aerial surveillance of operational oil pollution in Belgium's maritime zone of interest. Marine Pollution Bulletin 40: 1051–1056.
[23]  Cloutis EA (1989) Spectral reflectance properties of hydrocarbons: Remote-sensing implications. Science 245: 165–168.
[24]  Ben-Dor E, Inbar Y, Chen Y (1997) The reflectance spectra of organic matter in the visible near-infrared and short wave infrared region (400–2500 nm) during a controlled decomposition process. Remote Sensing of Environment 61: 1–15.
[25]  Bianchi R, Cavalli RM, Marino CM, Pignatti S, Poscolieri M. Use of airborne hyperspectral images to assess the spatial distribution of oil spilled during the Trecate blow-out (Northern Italy); 1995. pp. 352–362.
[26]  Gaffey SJ, McFadden LA, Nash D, Pieters CM (1993) Ultraviolet, visible, and near-infrared reflectance spectroscopy: Laboratory spectra of geologic materials. In: Pieters CM, Englert PAJ, editors. Geochemical Analysis: Elemental and Mineralogical Composition. Cambridge: Cambridge University Press. pp. 43–78.
[27]  H?rig B, Kühn F, Oschütz F, Lehmann F (2001) HyMap hyperspectral remote sensing to detect hydrocarbons. International Journal of Remote Sensing 22: 1413–1422.
[28]  Leifer I, Lehr WJ, Simecek-Beatty D, Bradley E, Clark R, et al. (2012) State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill. Remote Sensing of Environment 124: 185–209.
[29]  Kühn F, Oppermann K, H?rig B (2004) Hydrocarbon Index — An algorithm for hyperspectral detection of hydrocarbons. International Journal of Remote Sensing 22: 1413–1422.
[30]  Ben-Dor E, Banin A (1990) Near-Infrared Reflectance Analysis of Carbonate Concentration in Soils. Applied Spectroscopy 44: 1064–1069.
[31]  Gaffey SJ (1986) Spectral reflectance of carbonate minerals in the visible and near infrared (O.35-2.55 microns); calcite, aragonite, and dolomite. American Mineralogist 71: 151–162.
[32]  Gerrard AJ (1981) Soils and landforms: An integration of geomorphology and pedology. London, UK: George Allen & Unwin (Publishers) Ltd.
[33]  Kokaly RF, Asner GP, Ollinger SV, Martin ME, Wessman CA (2009) Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies. Remote Sensing of Environment 113: S78–S91.
[34]  Ustin SL, Gitelson AA, Jacquemoud S, Schaepman M, Asner GP, et al. (2009) Retrieval of foliar information about plant pigment systems from high resolution spectroscopy. Remote Sensing of Environment 113: S67–S77.
[35]  Houborg R, Soegaard H, Boegh E (2007) Combining vegetation index and model inversion methods for the extraction of key vegetation biophysical parameters using Terra and Aqua MODIS reflectance data. Remote Sensing of Environment 106: 39–58.
[36]  Zarco-Tejada PJ, Rueda CA, Ustin SL (2003) Water content estimation in vegetation with MODIS reflectance data and model inversion methods. Remote Sensing of Environment 85: 109–124.
[37]  Pe?uelas J, Gamon JA, Griffin KL, Field CB (1993) Assessing community type, plant biomass, pigment composition, and photosynthetic efficiency of aquatic vegetation from spectral reflectance. Remote Sensing of Environment 46: 110–118.
[38]  Jurgens C (1997) The modified normalized difference vegetation index (mNDVI) a new index to determine frost damages in agriculture based on Landsat TM data. International Journal of Remote Sensing 18: 3583–3594.
[39]  Hardisky MA, Klemas V, Smart RM (1983) The influence of soil-salinity, growth form, and leaf moisture on the spectral radiance of Spartina-alterniflora canopies. Photogrammetric Engineering and Remote Sensing 49: 77–83.
[40]  Hunt ER, Rock BN (1989) Detection of changes in leaf water content using near-infrared and middle-infrared reflectances. Remote Sensing of Environment 30: 43–54.
[41]  Clark RN, Roush TL (1984) Reflectance spectroscopy - Quantitative analysis techniques for remote sensing applications. Journal of Geophysical Research 89: 6329–6340.
[42]  Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment 8: 127–150.
[43]  Khanna S, Palacios-Orueta A, Whiting ML, Ustin SL, Riano D, et al. (2007) Development of angle indexes for soil moisture estimation, dry matter detection and land-cover discrimination. Remote Sensing of Environment 109: 154–165.
[44]  Li L, Ustin SL, Lay M (2005) Application of AVIRIS data in detection of oil-induced vegetation stress and cover change at Jornada, New Mexico. Remote Sensing of Environment 94: 1–16.
[45]  Van Der Meer F, Van Dijk P, Van Der Werff H, Yang H (2002) Remote sensing and petroleum seepage: a review and case study. Terra Nova 14: 1–17.
[46]  Yang H, Zhang J, Van der Meer F, Kroonenberg SB (1998) Geochemistry and field spectrometry for detecting hydrocarbon microseepage. Terra Nova 10: 231–235.
[47]  Gitelson A, Merzlyak MN (1994) Spectral reflectance changes associated with autumn senescence of Aesculus-hippocastanum L. and Acer-platanoides L. leaves - Spectral features and relation to chlorophyll estimation. Journal of Plant Physiology 143: 286–292.
[48]  Gitelson AA, Merzlyak MN (1997) Remote estimation of chlorophyll content in higher plant leaves. International Journal of Remote Sensing 18: 2691–2697.
[49]  Horler DNH, Dockray M, Barber J (1983) The red edge of plant leaf reflectance. International Journal of Remote Sensing 4: 273–288.
[50]  Milton NM, Eiswerth BA, Ager CM (1991) Effect of phosphorus deficiency on spectral reflectance and morphology of soybean plants. Remote Sensing of Environment 36: 121–127.
[51]  Hu C, Weisberg RH, Liu Y, Zheng L, Daly KL, et al. (2011) Did the northeastern Gulf of Mexico become greener after the Deepwater Horizon oil spill? Geophysical Research Letters 38: L09601.
[52]  Liu P, Li X, Qu JJ, Wang W, Zhao C, et al. (2011) Oil spill detection with fully polarimetric UAVSAR data. Marine Pollution Bulletin 62: 2611–2618.
[53]  Liu Y, Weisberg RH, Hu C, Zheng L. Combining numerical ocean circulation models with satellite observations in a trajectory forecast system: a rapid response to the Deepwater Horizon oil spill; 2011 May 4, 2011. pp. 80300K.
[54]  Ramsey III E, Rangoonwala A, Suzuoki Y, Jones CE (2011) Oil detection in a coastal marsh with polarimetric Synthetic Aperture Radar (SAR). Remote Sensing 3: 2630–2662.
[55]  Svejkovsky J, Lehr WJ, Muskat J, Graettinger G, Mullin J (2012) Operational utilization of aerial multispectral remote sensing during oil spill response: Lessons learned during the Deepwater Horizon (MC-252) spill. Photogrammetric Engineering and Remote Sensing in press.
[56]  Merton R. Monitoring community hysteresis using spectral shift analysis and the red-edge vegetation stress index; 1998 12–16 January; Pasadena, California, USA. NASA, Jet Propulsion Laboratory.
[57]  Kokaly RF, Heckman D, Holloway J, Piazza S, Couvillion B, et al.. (2011) Shoreline surveys of oil-impacted marsh in southern Louisiana, July to August 2010. U.S. Geological Survey. 124 p.
[58]  Koltunov A, Ustin SL, Quayle B, Schwind B (2012) GOES Early Fire Detection (GOES-EFD) system prototype. ASPRS 2012 Anuual Conference. Sacramento, CA.
[59]  Koltunov A, Ben-Dor E, Ustin SL (2008) Image construction using multitemporal observations and Dynamic Detection Models. International Journal of Remote Sensing 30: 57–83.
[60]  Irani M (2002) Multi-frame correspondence estimation using subspace constraints. International Journal of Computer Vision 48: 173–194.
[61]  Khanna S, Santos MJ, Ustin SL, Haverkamp PJ (2011) An integrated approach to a biophysiologically based classification of floating aquatic macrophytes. International Journal of Remote Sensing 32: 1067–1094.
[62]  Rosenfield GH, Fitzpatrick-Lins K (1986) A coefficient of agreement as a measure of thematic classification accuracy. Photogrammetric Engineering and Remote Sensing 52: 223–227.
[63]  Story M, Congalton RG (1986) Accuracy assessment - A user's perspective (map interpretation). Photogrammetric Engineering and Remote Sensing 52: 397–399.
[64]  Carter GA, Knapp AK (2001) Leaf optical properties in higher plants: linking spectral characteristics to stress and chlorophyll concentration. American Journal of Botany 88: 677–684.
[65]  Zar JH (2010) Biostatistical Analysis. Englewood CliffsNJUSA: Prentice-Hall. 944 p.
[66]  Dale MRT, Fortin MJ (2002) Spatial autocorrelation and statistical tests in ecology. Eco-science 9: 162–167.
[67]  Nagler PL, Daughtry CST, Goward SN (2000) Plant litter and soil reflectance. Remote Sensing of Environment 71: 207–215.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133