全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Improving Glyphosate Oxidation Activity of Glycine Oxidase from Bacillus cereus by Directed Evolution

DOI: 10.1371/journal.pone.0079175

Full-Text   Cite this paper   Add to My Lib

Abstract:

Glyphosate, a broad spectrum herbicide widely used in agriculture all over the world, inhibits 5-enolpyruvylshikimate-3-phosphate synthase in the shikimate pathway, and glycine oxidase (GO) has been reported to be able to catalyze the oxidative deamination of various amines and cleave the C-N bond in glyphosate. Here, in an effort to improve the catalytic activity of the glycine oxidase that was cloned from a glyphosate-degrading marine strain of Bacillus cereus (BceGO), we used a bacteriophage T7 lysis-based method for high-throughput screening of oxidase activity and engineered the gene encoding BceGO by directed evolution. Six mutants exhibiting enhanced activity toward glyphosate were screened from two rounds of error-prone PCR combined with site directed mutagenesis, and the beneficial mutations of the six evolved variants were recombined by DNA shuffling. Four recombinants were generated and, when compared with the wild-type BceGO, the most active mutant B3S1 showed the highest activity, exhibiting a 160-fold increase in substrate affinity, a 326-fold enhancement in catalytic efficiency against glyphosate, with little difference between their pH and temperature stabilities. The role of these mutations was explored through structure modeling and molecular docking, revealing that the Arg51 mutation is near the active site and could be an important residue contributing to the stabilization of glyphosate binding, while the role of the remaining mutations is unclear. These results provide insight into the application of directed evolution in optimizing glycine oxidase function and have laid a foundation for the development of glyphosate-tolerant crops.

References

[1]  Duke SO, Powles SB (2008) Glyphosate: a once-in-a-century herbicide. Pest Manag Sci 64: 319-325. doi:10.1002/ps.1518. PubMed: 18273882.
[2]  Steinrticken HC, Amrhein N (1980) The herbicide glyphosate is a potent inhibitor of 5-enolpyruvyl-shikimic acid-3-phosphate synthase. Biochem Biophys Res Commun 94: 1207-1212. doi:10.1016/0006-291X(80)90547-1. PubMed: 7396959.
[3]  Sch?nbrunn E, Eschenburg S, Shuttleworth WA, Schloss JV, Amrhein N et al. (2001) Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail. Proc Natl Acad Sci U S A 98: 1376-1380. doi:10.1073/pnas.98.4.1376. PubMed: 11171958.
[4]  Goldsbrough PB, Hatch EM, Huang B, Kosinski WG, Dyer WE et al. (1990) Gene amplification in glyphosate tolerant tobacco cells. Plant Sci 72: 53-62. doi:10.1016/0168-9452(90)90186-R.
[5]  Shah DM, Horsch RB, Klee HJ, Kishore GM, Winter JA et al. (1986) Engineering herbicide tolerance in transgenic plants. Science 233: 478-481. doi:10.1126/science.233.4762.478. PubMed: 17794571.
[6]  Steinrücken HC, Schulz A, Amrhein N, Porter CA, Fraley RT (1986) Overproduction of 5-enolpyruvylshikimate-3-phosphate synthase in a glyphosate-tolerant Petunia hybrida cell line. Arch Biochem Biophys 244: 169-178. doi:10.1016/0003-9861(86)90106-2. PubMed: 3947056.
[7]  Hammond BG, Nida DL, Burnette BL, Nickson TE, Mitsky T et al. (1996) The Expressed Protein in Glyphosate-Tolerant Soybean, 5-Enolypyruvylshikimate-3-Phosphate Synthase from Agrobacterium sp. Strain CP4, Is Rapidly Digested In Vitro and Is Not Toxic to Acutely Gavaged Mice. J Nutr 126: 728-740. PubMed: 8598558.
[8]  Padgette SR, Kolacz K, Delannay X, Re D, LaVallee B et al. (1995) Development, identification, and characterization of a glyphosate-tolerant soybean line. Crop Sci 35: 1451-1460. doi:10.2135/cropsci1995.0011183X003500050032?x.
[9]  Meilan R, Han K-H, Ma C, DiFazio SP, Eaton J et al. (2002) The CP4 transgene provides high levels of tolerance to Roundup? herbicide in field-grown hybrid poplars. Can J Res 32: 967-976. doi:10.1139/x02-015.
[10]  Tian YS, Xu J, Xiong AS, Zhao W, Fu XY et al. (2011) Improvement of Glyphosate Resistance through Concurrent Mutations in Three Amino Acids of the Ochrobactrum 5-Enopyruvylshikimate-3-Phosphate Synthase. Appl Environ Microbiol 77: 8409-8414. doi:10.1128/AEM.05271-11. PubMed: 21948846.
[11]  Castle LA, Siehl DL, Gorton R, Patten PA, Chen YH et al. (2004) Discovery and directed evolution of a glyphosate tolerance gene. Science 304: 1151-1154. doi:10.1126/science.1096770. PubMed: 15155947.
[12]  Siehl DL, Castle LA, Gorton R, Chen YH, Bertain S et al. (2005) Evolution of a microbial acetyltransferase for modification of glyphosate: a novel tolerance strategy. Pest Manag Sci 61: 235-240. doi:10.1002/ps.1014. PubMed: 15668959.
[13]  Barry GF, Kishore GM (1995) Glyphosate tolerant plants. US Patent 5,463,175.
[14]  Pedotti M, Rosini E, Molla G, Moschetti T, Savino C et al. (2009) Glyphosate resistance by engineering the flavoenzyme glycine oxidase. J Biol Chem 284: 36415-36423. doi:10.1074/jbc.M109.051631. PubMed: 19864430.
[15]  Pollegioni L, Schonbrunn E, Siehl D (2011) Molecular basis of glyphosate resistance–different approaches through protein engineering. FEBS J 278: 2753-2766. doi:10.1111/j.1742-4658.2011.08214.x. PubMed: 21668647.
[16]  Franz JE, Mao MK, Sikorski JA (1997) Glyphosate: a unique global herbicide. American Chemical Society Monograph 189, Washington DC.
[17]  Nandula VK, Reddy KN, Rimando AM, Duke SO, Poston DH (2007) Glyphosate-resistant and-susceptible soybean (Glycine max) and canola (Brassica napus) dose response and metabolism relationships with glyphosate. J Agric Food Chem 55: 3540-3545. doi:10.1021/jf063568l. PubMed: 17417871.
[18]  Settembre EC, Dorrestein PC, Park JH, Augustine AM, Begley TP et al. (2003) Structural and mechanistic studies on ThiO, a glycine oxidase essential for thiamin biosynthesis in Bacillus subtilis. Biochemistry 42: 2971-2981. doi:10.1021/bi026916v. PubMed: 12627963. doi:10.1021/bi026916v. PubMed: 12627963.
[19]  M?rtl M, Diederichs K, Welte W, Molla G, Motteran L et al. (2004) Structure-function correlation in glycine oxidase from Bacillus subtilis. J Biol Chem 279: 29718-29727. doi:10.1074/jbc.M401224200. PubMed: 15105420.
[20]  Nishiya Y, Imanaka T (1998) Purification and characterization of a novel glycine oxidase from Bacillus subtilis. FEBS Lett 438: 263-266. doi:10.1016/S0014-5793(98)01313-1. PubMed: 9827558.
[21]  Job V, Molla G, Pilone MS, Pollegioni L (2002) Overexpression of a recombinant wild-type and His-tagged Bacillus subtilis glycine oxidase in Escherichia coli. Eur J Biochem 269: 1456-1463. doi:10.1046/j.1432-1033.2002.02790.x. PubMed: 11874460.
[22]  Tarahovsky YS, Ivanitsky GR, Khusainov AA (1994) Lysis of Escherichia coli cells induced by bacteriophage T4. FEMS Microbiol Lett 122: 195-199. doi:10.1111/j.1574-6968.1994.tb07164.x. PubMed: 7958773.
[23]  Cadwell RC, Joyce GF (1992) Randomization of genes by PCR mutagenesis. Genome Res 2: 28–33. doi:10.1101/gr.2.1.28. PubMed: 1490172.
[24]  Weiner M, Costa G (1994) Rapid PCR site-directed mutagenesis. Genome Res 4: 131-136. doi:10.1101/gr.4.3.S131. PubMed: 224855457580894.
[25]  Stemmer PC W (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370: 389-391. doi:10.1038/370389a0. PubMed: 8047147.
[26]  Stemmer WP (1994) DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc Natl Acad Sci U S A 91: 10747-10751. doi:10.1073/pnas.91.22.10747. PubMed: 7938023.
[27]  Elsner HI, Lindblad EB (1989) Ultrasonic degradation of DNA. DNA 8: 697-701. doi:10.1089/dna.1989.8.697. PubMed: 2693020.
[28]  Larguinho M, Santos HM, Doria G, Scholz H, Baptista PV et al. (2010) Development of a fast and efficient ultrasonic-based strategy for DNA fragmentation. Talanta 81: 881-886. doi:10.1016/j.talanta.2010.01.032. PubMed: 20298868.
[29]  Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254. doi:10.1016/0003-2697(76)90527-3. PubMed: 942051.
[30]  Job V, Marcone GL, Pilone MS, Pollegioni L (2002) Glycine oxidase from Bacillus subtilis: characterization of a new flavoprotein. J Biol Chem 277: 6985-6993. doi:10.1074/jbc.M111095200. PubMed: 11744710.
[31]  Stierand K, Rarey M (2011) Flat and Easy: 2D Depiction of Protein-Ligand Complexes. Molecular Informatics 30: 12-19. doi:10.1002/minf.201000167.
[32]  Ahmad S, Gromiha M, Fawareh H, Sarai A (2004) ASAView: database and tool for solvent accessibility representation in proteins. BMC Bioinformatics 5: 51-56. doi:10.1186/1471-2105-5-51. PubMed: 15119964.
[33]  Rost B, Sander C (1994) Conservation and prediction of solvent accessibility in protein families. Proteins Struct Funct Bioinf 20: 216-226. doi:10.1002/prot.340200303. PubMed: 7892171.
[34]  Zhao H, Arnold FH (1997) Combinatorial protein design: strategies for screening protein libraries. Curr Opin Struct Biol 7: 480-485. doi:10.1016/S0959-440X(97)80110-8. PubMed: 9266168.
[35]  Joern JM, Meinhold P, Arnold FH (2002) Analysis of shuffled gene libraries. J Mol Biol 316: 643-656. doi:10.1006/jmbi.2001.5349. PubMed: 11866523.
[36]  Martínez-Martínez I, Navarro-Fernández J, García-Carmona F, Takami H, Sánchez-Ferrer A (2008) Characterization and structural modeling of a novel thermostable glycine oxidase from Geobacillus kaustophilus HTA426. Proteins Struct Funct Bioinf 70: 1429-1441. PubMed: 17894345.
[37]  McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16: 404-405. doi:10.1093/bioinformatics/16.4.404. PubMed: 10869041.
[38]  Fraaije MW, Mattevi A (2000) Flavoenzymes: diverse catalysts with recurrent features. Trends Biochem Sci 25: 126-132. doi:10.1016/S0968-0004(99)01533-9. PubMed: 10694883.
[39]  Horsman GP, Liu AM, Henke E, Bornscheuer UT, Kazlauskas RJ (2003) Mutations in distant residues moderately increase the enantioselectivity of Pseudomonas fluorescens esterase towards methyl 3bromo‐2‐methylpropanoate and ethyl 3phenylbutyrate. Chem _Eur J 9: 1933-1939. PubMed: 12740839.
[40]  Park S, Morley KL, Horsman GP, Holmquist M, Hult K et al. (2005) Focusing Mutations into the P. fluorescens Esterase Binding Site Increases Enantioselectivity More Effectively than Distant Mutations. Chem Biol 12: 45-54. doi:10.1016/j.chembiol.2004.10.012. PubMed: 15664514.
[41]  Morley KL, Kazlauskas RJ (2005) Improving enzyme properties: when are closer mutations better? Trends Biotechnol 23: 231-237. doi:10.1016/j.tibtech.2005.03.005. PubMed: 15866000.
[42]  Pollegioni L, Schonbrunn E, Siehl D (2011) Molecular basis of glyphosate resistance: Different approaches through protein engineering. FEBS J 278: 2753-2766. doi:10.1111/j.1742-4658.2011.08214.x. PubMed: 21668647.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133