全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Fungal Garden Making inside Bamboos by a Non-Social Fungus-Growing Beetle

DOI: 10.1371/journal.pone.0079515

Full-Text   Cite this paper   Add to My Lib

Abstract:

In fungus-growing mutualism, it is indispensable for host animals to establish gardens of the symbiotic fungus as rapidly as possible. How to establish fungal gardens has been well-documented in social fungus-farming insects, whereas poorly documented in non-social fungus-farming insects. Here we report that the non-social, fungus-growing lizard beetle Doubledaya bucculenta (Coleoptera: Erotylidae: Languriinae) transmits the symbiotic yeast Wickerhamomyces anomalus from the ovipositor-associated mycangium into bamboo internode cavities and disperses the yeast in the cavities to make gardens. Microbial isolation and cryo-scanning electron microscopy observation revealed that W. anomalus was constantly located on the posterior ends of eggs, where larvae came out, and on the inner openings of oviposition holes. Direct observation of oviposition behavior inside internodes revealed that the distal parts of ovipositors showed a peristaltic movement when they were in contact with the posterior ends of eggs. Rearing experiments showed that W. anomalus was spread much more rapidly and widely on culture media and internodes in the presence of the larvae than in the absence. These results suggest that the ovipositors play a critical role in vertical transmission of W. anomalus and that the larvae contribute actively to the garden establishment, providing a novel case of fungal garden founding in non-social insect-fungus mutualism.

References

[1]  Norris DM (1979) The mutualistic fungi of Xyleborini beetles. In: LR Batra. Insect-Fungus Symbiosis. Monclair: Allanheld, Osmun. pp. 53–65.
[2]  Leuthold RH, Badertscher S, Imboden H (1989) The inoculation of newly formed fungus comb with Termitomyces in Macrotermes colonies (Isoptera, Macrotermitinae). Insects Soc 36: 328–338. doi:10.1007/BF02224884.
[3]  Mueller UG (2002) Ant versus fungus versus mutualism: Ant-cultivar conflict and the deconstruction of the attine ant-fungus symbiosis. Am Nat 160(Suppl.): S67–S98. doi:10.1086/342084. PubMed: 18707454.
[4]  Mueller UG, Gerardo NM, Aanen DK, Six DL, Schultz TR (2005) The evolution of agriculture in insects. Annu Rev Ecol Evol Syst 36: 563–595. doi:10.1146/annurev.ecolsys.36.102003.152626.
[5]  Schultz TR, Mueller UG, Currie CR, Rehner SA (2005) Reciprocal illumination: A comparison of agriculture in humans and ants. In: F. VegaM. Blackwell. Insect-Fungal Associations: Ecology and Evolution. New York: Oxford University Press. pp. 149–190.
[6]  Biedermann PHW, Taborsky M (2011) Larval helpers and age polyethism in ambrosia beetles. Proc Natl Acad Sci U_S_A 108: 17064–17069. doi:10.1073/pnas.1107758108. PubMed: 21969580.
[7]  Silliman BR, Newell SY (2003) Fungal farming in a snail. Proc Natl Acad Sci U_S_A 100: 15643–15648. doi:10.1073/pnas.2535227100. PubMed: 14657360.
[8]  Hata H, Kato M (2006) A novel obligate cultivation mutualism between damselfish and Polysiphonia algae. Biol Lett 2: 593–596. doi:10.1098/rsbl.2006.0528. PubMed: 17148297.
[9]  Brock DA, Douglas TE, Queller DC, Strassmann JE (2011) Primitive agriculture in a social amoeba. Nature 469: 393–396. doi:10.1038/nature09668. PubMed: 21248849.
[10]  Francke-Grosmann H (1967) Ectosymbiosis in wood-inhabiting insects. In: SM Henly. Symbiosis: Associations of invertebrates, birds, ruminants, and other biota. New York: Academic Press. pp. 141–205.
[11]  Sawada Y, Morimoto K (1986) The mycetangia and the mode of the fungus transmission in the weevil genus Euops (Coleoptera: Attelabidae). Sci Bull Fac Agric Kyushu Univ 49: 197–205.
[12]  Kobayashi C, Fukasawa Y, Hirose D, Kato M (2008) Contribution of symbiotic mycangial fungi to larval nutrition of a leaf-rolling weevil. Evol Ecol 22: 711–722.
[13]  Rohfritsch O (2008) Plants, gall midges, and fungi: a three-component system. Entomol Exp Appl 128: 208–216. doi:10.1111/j.1570-7458.2008.00726.x.
[14]  Li X, Guo W, Ding J (2012) Mycangial fungus benefits the development of a leaf-rolling weevil, Euops chinesis. J Insect Physiol 58: 867–873. doi:10.1016/j.jinsphys.2012.03.011. PubMed: 22465740.
[15]  Toki W, Tanahashi M, Togashi K, Fukatsu T (2012) Fungal farming in a non-social beetle. PLOS ONE 7: e41893. doi:10.1371/journal.pone.0041893. PubMed: 22848648.
[16]  Batra LR (1963) Ecology of ambrosia fungi and their dissemination by beetles. Trans Kans Acad Sci 66: 213–236. doi:10.2307/3626562.
[17]  Quinlan RJ, Cherrett JM (1978) Studies on the role of the infrabuccal pocket of the leaf-cutting ant Acromyrmex octospinosus (Reich) (Hym., Formicidae). Insects Soc 25: 237–245. doi:10.1007/BF02224744.
[18]  Morgan FD (1968) Bionomics of Siricidae. Annu Rev Entomol 13: 239–256. doi:10.1146/annurev.en.13.010168.001323.
[19]  Borkent A, Bissett J (1985) Gall midges (Diptera: Cecidomyiidae) are vectors for their fungal symbionts. Symbiosis 1: 185–194.
[20]  Buchner P (1965) Endosymbiosis of animals with plant microorganisms. N Y Intersci: 909.
[21]  Tanahashi M, Kubota K, Matsushita N, Togashi K (2010) Discovery of mycangia and the associated xylose-fermenting yeasts in stag beetles (Coleoptera: Lucanidae). Naturwissenschaften 97: 311–317. doi:10.1007/s00114-009-0643-5. PubMed: 20107974.
[22]  Grebennikov VV, Leschen RAB (2010) External exoskeletal cavities in Coleoptera and their possible mycangial functions. Entomol Sci 13: 81–98. doi:10.1111/j.1479-8298.2009.00351.x.
[23]  Coutts MP, Dolezal JE (1969) Emplacement of fungal spores by the woodwasp, Sirex noctilio, during oviposition. Forest Sci 15: 412–416.
[24]  Toki W, Togashi K (2011) Exaggerated asymmetric head morphology of female Doubledaya bucculenta (Coleoptera: Erotylidae: Languriinae) and ovipositional preference for bamboo internodes. Zool Sci 28: 348–354. doi:10.2108/zsj.28.348. PubMed: 21557658.
[25]  Hayashi N (1974) Ecology of Doubledaya bucculenta. Nat Insects 9: 17.
[26]  Toki W (2009) New host plants and additional records of asymmetric lizard beetle Doubledaya bucculenta Lewis. p. 1884 (Coleoptera: Erotylidae: Languriinae) in distributional northernmost region. Biogeography 11: 109–111.
[27]  Toki W, Hosoya T (2012) New host plant and southernmost records of asymmetric lizard beetle Doubledaya bucculenta Lewis (Coleoptera: Erotylidae: Languriinae). Elytra New Ser 1: 253–254.
[28]  White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: MA InnisDH GelfandJJ SninskyTJ White. PCR protocols–a guide to methods and applications. San Diego: Academic. pp 315–322.
[29]  Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882. doi:10.1093/nar/25.24.4876. PubMed: 9396791.
[30]  Swofford DL (2002) PAUP*, phylogenetic analysis using parsimony (* and other methods). version 4.0b Sinauer10, Sunderland, MA.
[31]  R Development Core Team (2012) R: A language and environment for statistical computing. Vienna: R168 Foundation for Statistical Computing.
[32]  Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 73: 331–371. doi:10.1023/A:1001761008817. PubMed: 9850420.
[33]  Kurtzman CP, Robnett CJ, Basehoar-Powers E (2008) Phylogenetic relationships among species of Pichia, Issatchenkia and Williopsis determined from multigene sequence analysis, and the proposal of Barnettozyma gen. nov., Lindnera gen. nov. and Wickerhamomyces gen. nov. FEMS Yeast Res 8: 939–954. doi:10.1111/j.1567-1364.2008.00419.x. PubMed: 18671746.
[34]  Groenewald M, Smith MT (2010) Re-examination of strains formerly assigned to Hyphopichia burtonii, the phylogeny of the genus Hyphopichia, and the description of Hyphopichia pseudoburtonii sp. nov. Int J Syst Evol Micr 60: 2675–2680. doi:10.1099/ijs.0.018580-0. PubMed: 19965989.
[35]  Kurtzman CP (2011) Phylogeny of the ascomycetous yeasts and the renaming of Pichia anomala to Wickerhamomyces anomalus. Antonie Van Leeuwenhoek 99: 13–23. doi:10.1007/s10482-010-9505-6. PubMed: 20838888.
[36]  Kurtzman CP, Robnett CJ (2003) Phylogenetic relationships among yeasts of the ‘Saccharomyces complex’ determined from multigene sequence analyses. FEMS Yeast Res 3: 417–432. doi:10.1016/S1567-1356(03)00012-6. PubMed: 12748053.
[37]  H?lldobler B, Wilson EO (1990) The Ants. Cambridge: Harvard University Press. 732 pp.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133