全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Identification and Diversity of Killer Cell Ig-Like Receptors in Aotus vociferans, a New World Monkey

DOI: 10.1371/journal.pone.0079731

Full-Text   Cite this paper   Add to My Lib

Abstract:

Previous BAC clone analysis of the Platyrrhini owl monkey KIRs have shown an unusual genetic structure in some loci. Therefore, cDNAs encoding KIR molecules from eleven Aotus vociferans monkeys were characterized here; ten putative KIR loci were found, some of which encoded atypical proteins such as KIR4DL and transcripts predicted to encode a D0+D1 configuration (AOTVOKIR2DL1*01v1) which appear to be unique in the Aotus genus. Furthermore, alternative splicing was found as a likely mechanism for producing activator receptors in A. vociferans species. KIR proteins from New World monkeys may be split into three new lineages according to domain by domain phylogenetic analysis. Although the A. vociferans KIR family displayed a high divergence among paralogous genes, individual loci were limited in their genetic polymorphism. Selection analysis showed that both constrained and rapid evolution may operate within the AvKIR family. The frequent alternative splicing (as a likely mechanism generating activator receptors), the presence of KIR4DL and KIR2DL1 (D0+D1) molecules and other data reported here suggest that the KIR family in Aotus has had a rapid evolution, independent from its Catarrhini counterparts.

References

[1]  Zwirner NW, Domaica CI (2010) Cytokine regulation of natural killer cell effector functions. Biofactors 36: 274-288. doi:10.1002/biof.107. PubMed: 20623510.
[2]  Trowsdale J, Barten R, Haude A, Stewart CA, Beck S et al. (2001) The genomic context of natural killer receptor extended gene families. Immunol Rev 181: 20-38. doi:10.1034/j.1600-065X.2001.1810102.x. PubMed: 11513141.
[3]  Natarajan K, Dimasi N, Wang J, Mariuzza RA, Margulies DH (2002) Structure and function of natural killer cell receptors: multiple molecular solutions to self, nonself discrimination. Annu Rev Immunol 20: 853-885. doi:10.1146/annurev.immunol.20.100301.064812. PubMed: 11861620.
[4]  Long EO (1999) Regulation of immune responses through inhibitory receptors. Annu Rev Immunol 17: 875-904. doi:10.1146/annurev.immunol.17.1.875. PubMed: 10358776.
[5]  Isakov N (1997) Immunoreceptor tyrosine-based activation motif (ITAM), a unique module linking antigen and Fc receptors to their signaling cascades. J Leukoc Biol 61: 6-16. PubMed: 9000531.
[6]  Khakoo SI, Rajalingam R, Shum BP, Weidenbach K, Flodin L et al. (2000) Rapid evolution of NK cell receptor systems demonstrated by comparison of chimpanzees and humans. Immunity 12: 687-698. doi:10.1016/S1074-7613(00)80219-8. PubMed: 10894168.
[7]  Sambrook JG, Bashirova A, Palmer S, Sims S, Trowsdale J et al. (2005) Single haplotype analysis demonstrates rapid evolution of the killer immunoglobulin-like receptor (KIR) loci in primates. Genome Res 15: 25-35. doi:10.1101/gr.2381205. PubMed: 15632087.
[8]  Rajalingam R, Parham P, Abi-Rached L (2004) Domain shuffling has been the main mechanism forming new hominoid killer cell Ig-like receptors. J Immunol 172: 356-369. PubMed: 14688344.
[9]  Guethlein LA, Flodin LR, Adams EJ, Parham P (2002) NK cell receptors of the orangutan (Pongo pygmaeus): a pivotal species for tracking the coevolution of killer cell Ig-like receptors with MHC-C. J Immunol 169: 220-229. PubMed: 12077248.
[10]  Hershberger KL, Shyam R, Miura A, Letvin NL (2001) Diversity of the killer cell Ig-like receptors of rhesus monkeys. J Immunol 166: 4380-4390. PubMed: 11254692.
[11]  Bimber BN, Moreland AJ, Wiseman RW, Hughes AL, O'Connor DH (2008) Complete characterization of killer Ig-like receptor (KIR) haplotypes in Mauritian cynomolgus macaques: novel insights into nonhuman primate KIR gene content and organization. J Immunol 181: 6301-6308. PubMed: 18941221.
[12]  Mager DL, McQueen KL, Wee V, Freeman JD (2001) Evolution of natural killer cell receptors: coexistence of functional Ly49 and KIR genes in baboons. Curr Biol 11: 626-630. doi:10.1016/S0960-9822(01)00148-8. PubMed: 11369209.
[13]  Hershberger KL, Kurian J, Korber BT, Letvin NL (2005) Killer cell immunoglobulin-like receptors (KIR) of the African-origin sabaeus monkey: evidence for recombination events in the evolution of KIR. Eur J Immunol 35: 922-935. doi:10.1002/eji.200425408. PubMed: 15714591.
[14]  Palacios C, Cuervo LC, Cadavid LF (2011) Evolutionary patterns of killer cell Ig-like receptor genes in Old World monkeys. Gene 474: 39-51. doi:10.1016/j.gene.2010.12.006. PubMed: 21185924.
[15]  Cadavid LF, Lun CM (2009) Lineage-specific diversification of killer cell Ig-like receptors in the owl monkey, a New World primate. Immunogenetics 61: 27-41. doi:10.1007/s00251-008-0342-y. PubMed: 19009288.
[16]  Guethlein LA, Older Aguilar AM, Abi-Rached L, Parham P (2007) Evolution of killer cell Ig-like receptor (KIR) genes: definition of an orangutan KIR haplotype reveals expansion of lineage III KIR associated with the emergence of MHC-C. J Immunol 179: 491-504. PubMed: 17579070.
[17]  Menezes AN, Bonvicino CR, Seuánez HN (2010) Identification, classification and evolution of owl monkeys (Aotus, Illiger 1811). BMC Evol Biol 10: 248. doi:10.1186/1471-2148-10-248. PubMed: 20704725.
[18]  Robinson J, Mistry K, McWilliam H, Lopez R, Marsh SG (2010) IPD--the Immuno Polymorphism Database. Nucleic Acids Res 38: D863-D869. doi:10.1093/nar/gkp879. PubMed: 19875415.
[19]  K?ll L, Krogh A, Sonnhammer EL (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338: 1027-1036. doi:10.1016/j.jmb.2004.03.016. PubMed: 15111065.
[20]  Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305: 567-580. doi:10.1006/jmbi.2000.4315. PubMed: 11152613.
[21]  Vivian JP, Duncan RC, Berry R, O'Connor GM, Reid HH et al. (2011) Killer cell immunoglobulin-like receptor 3DL1-mediated recognition of human leukocyte antigen B. Nature 479: 401-405. doi:10.1038/nature10517. PubMed: 22020283.
[22]  Chwae YJ, Cho SE, Kim SJ, Kim J (1999) Diversity of the repertoire of p58 killer cell inhibitory receptors in a single individual. Immunol Lett 68: 267-274. doi:10.1016/S0165-2478(99)00062-0. PubMed: 10424431.
[23]  Goodridge JP, Lathbury LJ, Steiner NK, Shulse CN, Pullikotil P et al. (2007) Three common alleles of KIR2DL4 (CD158d) encode constitutively expressed, inducible and secreted receptors in NK cells. Eur J Immunol 37: 199-211. doi:10.1002/eji.200636316. PubMed: 17171757.
[24]  Maxwell LD, Wallace A, Middleton D, Curran MD (2002) A common KIR2DS4 deletion variant in the human that predicts a soluble KIR molecule analogous to the KIR1D molecule observed in the rhesus monkey. Tissue Antigens 60: 254-258. doi:10.1034/j.1399-0039.2002.600307.x. PubMed: 12445308.
[25]  Campbell KS, Purdy AK (2011) Structure/function of human killer cell immunoglobulin-like receptors: lessons from polymorphisms, evolution, crystal structures and mutations. Immunology 132: 315-325. doi:10.1111/j.1365-2567.2010.03398.x. PubMed: 21214544.
[26]  Feng J, Garrity D, Call ME, Moffett H, Wucherpfennig KW (2005) Convergence on a distinctive assembly mechanism by unrelated families of activating immune receptors. Immunity 22: 427-438. doi:10.1016/j.immuni.2005.02.005. PubMed: 15845448.
[27]  Hao L, Nei M (2005) Rapid expansion of killer cell immunoglobulin-like receptor genes in primates and their coevolution with MHC Class I genes. Gene 347: 149-159. doi:10.1016/j.gene.2004.12.012. PubMed: 15733532.
[28]  Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39: 121-152. doi:10.1146/annurev.genet.39.073003.112240. PubMed: 16285855.
[29]  Hughes AL (2002) Evolution of the human killer cell inhibitory receptor family. Mol Phylogenet Evol 25: 330-340. doi:10.1016/S1055-7903(02)00255-5. PubMed: 12414314.
[30]  Rajalingam R (2011) Human diversity of killer cell immunoglobulin-like receptors and disease. Korean J Hematol 46: 216-228. doi:10.5045/kjh.2011.46.4.216. PubMed: 22259627.
[31]  Boyington JC, Sun PD (2002) A structural perspective on MHC class I recognition by killer cell immunoglobulin-like receptors. Mol Immunol 38: 1007-1021. doi:10.1016/S0161-5890(02)00030-5. PubMed: 11955593.
[32]  Boyington JC, Brooks AG, Sun PD (2001) Structure of killer cell immunoglobulin-like receptors and their recognition of the class I MHC molecules. Immunol Rev 181: 66-78. doi:10.1034/j.1600-065X.2001.1810105.x. PubMed: 11513153.
[33]  Committee for the Update of the Guide for the Care and Use of Laboratory Animals (2011) Guide for the Care and Use of Laboratory Animals. Washington, DC: TNA Press.
[34]  Qiu X, Wu L, Huang H, McDonel PE, Palumbo AV et al. (2001) Evaluation of PCR-generated chimeras, mutations, and heteroduplexes with 16S rRNA gene-based cloning. Appl Environ Microbiol 67: 880-887. doi:10.1128/AEM.67.2.880-887.2001. PubMed: 11157258.
[35]  Lahr DJ, Katz LA (2009) Reducing the impact of PCR-mediated recombination in molecular evolution and environmental studies using a new-generation high-fidelity DNA polymerase. BioTechniques 47: 857-866. PubMed: 19852769.
[36]  Lenz TL, Becker S (2008) Simple approach to reduce PCR artefact formation leads to reliable genotyping of MHC and other highly polymorphic loci--implications for evolutionary analysis. Gene 427: 117-123. doi:10.1016/j.gene.2008.09.013. PubMed: 18848974.
[37]  Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673-4680. doi:10.1093/nar/22.22.4673. PubMed: 7984417.
[38]  Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731-2739. doi:10.1093/molbev/msr121. PubMed: 21546353.
[39]  Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111-120. doi:10.1007/BF01731581. PubMed: 7463489.
[40]  Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451-1452. doi:10.1093/bioinformatics/btp187. PubMed: 19346325.
[41]  Zhang J, Rosenberg HF, Nei M (1998) Positive Darwinian selection after gene duplication in primate ribonuclease genes. Proc Natl Acad Sci U S A 95: 3708-3713. doi:10.1073/pnas.95.7.3708. PubMed: 9520431.
[42]  Kosakovsky Pond SL, Frost SD (2005) Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22: 1208-1222. doi:10.1093/molbev/msi105. PubMed: 15703242.
[43]  Murrell B, Wertheim JO, Moola S, Weighill T, Scheffler K et al. (2012) Detecting individual sites subject to episodic diversifying selection. PLOS Genet 8: e1002764. PubMed: 22807683.
[44]  Delport W, Poon AF, Frost SD, Kosakovsky Pond SL (2010) Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 26: 2455-2457. doi:10.1093/bioinformatics/btq429. PubMed: 20671151.
[45]  Murrell B, Moola S, Mabona A, Weighill T, Sheward D et al. (2013) FUBAR : A Fast, Unconstrained Bayesian AppRoximation for inferring selection. Mol Biol Evol. 30(5):1196-205
[46]  Martin DP, Lemey P, Lott M, Moulton V, Posada D et al. (2010) RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics 26: 2462-2463. doi:10.1093/bioinformatics/btq467. PubMed: 20798170.
[47]  Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10: 512-526. PubMed: 8336541.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133