A 5′- Regulatory Region and Two Coding Region Polymorphisms Modulate Promoter Activity and Gene Expression of the Growth Suppressor Gene ZBED6 in Cattle
Zinc finger, BED-type containing 6 (ZBED6) is an important transcription factor in placental mammals, affecting development, cell proliferation and growth. Polymorphisms in its promoter and coding regions are likely to impact ZBED6 transcription and growth traits. In this study, rapid amplification of 5’ cDNA ends (5'-RACE) analysis revealed two transcription start sites (TSS) for the bovine ZBED6 starting within exon 1 of the ZC3H11A gene (TSS-1) and upstream of the translation start codon of the ZBED6 gene (TSS-2). There was one SNP in the promoter and two missense mutations in the coding region of the bovine ZBED6 by sequencing of the pooled DNA samples (Pool-Seq, n = 100). The promoter and coding region are the key regions for gene function; polymorphisms in these regions can alter gene expression. Quantitative real-time PCR (qPCR) analysis showed that ZBED6 has a broad tissue distribution in cattle and is highly expressed in skeletal muscle. Eleven promoter-detection vectors were constructed, which enabled the cloning of putative promoter sequences and analysis of ZBED6 transcriptional activity by luciferase reporter gene assays. The core region of the basal promoter of bovine ZBED6 is located within region -866 to -556. The activity of WT-826G-pGL3 in driving reporter gene transcription is significantly higher than that of the M-826A-pGL3 construct (P < 0.01). Analysis of gene expression patterns in homozygous full-sibling Chinese Qinchuan cattle showed that the mutant-type Hap-AGG exhibited a lower mRNA level than the wild-type Hap-GCA (P < 0.05) in longissimus dorsi muscle (LDM). Moreover, ZBED6 mRNA expression was low in C2C12 cells overexpressing the mutant-type ZBED6 (pcDNA3.1+-Hap-GG) (P < 0.01). Our results suggest that the polymorphisms in the promoter and coding regions may modulate the promoter activity and gene expression of bovine ZBED6 in the skeletal muscles of these cattle breeds.
References
[1]
Andersson L (2001) Genetic dissection of phenotypic diversity in farm animals. Nat Rev Genet 2 (2): 130–138. doi:10.1038/35052563. PubMed: 11253052.
[2]
Jones JI, Clemmons DR (1995) Insulin - like growth factors and their binding proteins: biological actions. Endocr Rev 16(1): 3–34. doi:10.1210/er.16.1.3. PubMed: 7758431.
[3]
Nakae J, Kido Y, Accili D (2001) Distinct and overlapping functions of insulin and IGF - I receptors. Endocr Rev 22(6): 818–835. doi:10.1210/er.22.6.818. PubMed: 11739335.
[4]
Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A (1993) Mice carrying null mutations of the genes encoding insulin- like growth factor I (Igf - 1) and type 1 IGF receptor (Igf1r). Cell 75(1): 59–72. doi:10.1016/S0092-8674(05)80084-4. PubMed: 8402901.
[5]
Jeon JT, Carlborg O, T?rnsten A, Giuffra E, Amarger V et al. (1999) A paternally expressed QTL affecting skeletal and cardiac muscle mass in pig s maps to the IGF2 locus. Nat Genet 21(2): 157–158. doi:10.1038/5938. PubMed: 9988263.
[6]
Nezer C, Moreau L, Brouwers B, Coppieters W, Detilleux J et al. (1999) An imprinted QTL with major effect on muscle mass and fat deposition maps to the IGF2 locus in pigs. Nat Genet 21(2): 155–156. doi:10.1038/5935. PubMed: 9988262.
[7]
Van Laere AS, Nguyen M, Braunschweig M, Nezer C, Collette C et al. (2003) A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature 425: 832–826. doi:10.1038/nature02064. PubMed: 14574411.
[8]
Markljung E, Jiang L, Jaffe JD, Mikkelsen TS, Wallerman O et al. (2009) ZBED6, a Novel Transcription Factor Derived from a Domesticated DNA Transposon Regulates IGF2 Expression and Muscle Growth. PLOS Biol 7(12): e1000256. doi:10.1371/journal.pbio10. PubMed: 20016685.
[9]
Hayward A, Ghazal A, Andersson G, Andersson L, Jern P (2013) ZBED evolution: repeated utilization of DNA transposons as regulators of diverse host functions. PLOS ONE 8(3): e59940. doi:10.1371/journal.pone.0059940. PubMed: 23533661.
[10]
Andersson L (2009) Studying phenotypic evolution in domestic animals: a walk in the footsteps of Charles Darwin. Cold Spring Harb Symp Quant Biol 74: 319-325. doi:10.1101/sqb.2009.74.039. PubMed: 20375320.
[11]
Andersson L, Andersson G, Hj?lm G, Jiang L, Lindblad-Toh K et al. (2010) ZBED6: The birth of a new transcription factor in the common ancestor of placental mammals. Transcription 1(3): 144-148. doi:10.4161/trns.1.3.13343. PubMed: 21326889.
[12]
Sambrook J, Russell DWPT Huang (2002). Molecular Cloning A Laboratory Manual. Beijing: Science and Publishing House.
[13]
Livak KJ, Schmitteg TD (2001) Analysis of relative gene expression data using Quantitative Real-Time PCR and the 2[-delta delta c(t)] method. Methods 25: 402–408. doi:10.1006/meth.2001.1262. PubMed: 11846609.
[14]
Cartharius K, Frech K, Grote K, Klocke B, Haltmeier M et al. (2005) MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics 21: 2933 - 2942. doi:10.1093/bioinformatics/bti473. PubMed: 15860560.
[15]
Carninci P, Sandelin A, Lenhard B, Katayama S, Shimokawa K et al. (2006) Genome-wide analysis of mammalian promoter architecture and evolution. Nat Genet 38: 626 - 635. doi:10.1038/ng1789. PubMed: 16645617.
[16]
Bjornsdottir G, Myers LC (2008) Minimal components of the RNA polymerase II transcription apparatus determine the consensus TATA box. Nucleic Acids Res 36: 2906–2916. doi:10.1093/nar/gkn130. PubMed: 18385157.
[17]
Sandelin A, Carninci P, Lenhard B, Ponjavic J, Hayashizaki Y et al. (2007) Mammalian RNA polymerase II core promoters: insights from genome-wide studies. Nat Rev Genet 8: 424–436. doi:10.1038/nrg2026. PubMed: 17486122.
[18]
Bajic VB, Tan SL, Christoffels A, Sch?nbach C, Lipovich L et al. (2006) Mice and men: their promoter properties. PLOS Genet 2: e54. doi:10.1371/journal.pgen.0020054. PubMed: 16683032.
[19]
FitzGerald PC, Shlyakhtenko A, Mir AA, Vinson C (2004) Clustering of DNA sequences in human promoters. Genome Res 14: 1562–1574. doi:10.1101/gr.1953904. PubMed: 15256515.
[20]
Anish R, Hossain MB, Jacobson RH, Takada S (2009) Characterization of transcription from TATA-less promoters: identification of a new core promoter element XCPE2 and analysis of factor requirements. PLOS ONE 4: e5103. doi:10.1371/journal.pone.0005103. PubMed: 19337366.
[21]
Lilly B, Galewsky S, Firulli AB, Schulz RA, Olson EN (1994) D-MEF2: a MADS box transcription factor expressed in differentiating mesoderm and muscle cell lineages during Drosophila embryogenesis. Proc Natl Acad Sci USA 91(12): 5662 - 5666. doi:10.1073/pnas.91.12.5662. PubMed: 8202544.
[22]
Jianrong L, Timothy AM, Rebekka LN, Eric NO (2000) Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases. Proc Natl Acad Sci USA 97(8): 4070 - 4075. doi:10.1073/pnas.080064097. PubMed: 10737771.
[23]
Jonsen MD, Duval DL, Gutierrez-Hartmann A (2009) The 26 amino acid beta motif of the Pit1 beta transcription factor is a dominant and independent repressor domain. Mol Endocrinol 23: 1371 - 1384. doi:10.1210/me.2008-0137. PubMed: 19556346.
[24]
Stanceková K, Vasícek D, Peskovicová D, Bulla J, Kúbek A (1999) Effect of genetic variability of the porcine pituitary specific transcription factor (PIT1) on carcas traits in pigs. Anim Genet 30: 313-315. doi:10.1046/j.1365-2052.1999.00484.x. PubMed: 10467708.
[25]
Renaville R, Gengler N, Vrech E, Prandi A, Massart S et al. (1997) Pit1 gene polymorphism, milk yield, and conformation traits for Italian Holstein -Friesian bulls. J Dairy Sci 80: 3431-3438. doi:10.3168/jds.S0022-0302(97)76319-7. PubMed: 9436126.
[26]
Jia XJ, Wang CF, Yang GW, Huang JM, Li QL et al. (2011) Polymorphism of POU1F1 gene and PRL gene and their combined effects on milk performance traits in Chinese Holstein cattle. Yi Chuan 33: 1359 - 1365. PubMed: 22207382.
[27]
Hollenberg SM, Cheng PF, Weintraub H (1993) Use of a conditional MyoD transcription factor in studies of MyoD trans-activation and muscle determination. Proc Natl Acad Sci USA 90(17): 8028-8032. doi:10.1073/pnas.90.17.8028. PubMed: 8396258.
[28]
Cao Y, Yao Z, Sarkar D, Lawrence M, Sanchez GJ et al. (2010) Genome-wide MyoD binding in skeletal muscle cells: a potential for broad cellular reprogramming. Dev Cell 18(4): 662-674. doi:10.1016/j.devcel.2010.02.014. PubMed: 20412780.
[29]
Huang YZ, He H, Zhan ZY, Sun YJ, Li MX et al. (2013) Relationship of polymorphisms within ZBED6 gene and growth traits in beef cattle. Gene 526: 107-111. PubMed: 23644023.
[30]
Bahar B, O'Halloran F, Callanan MJ, McParland S, Giblin L et al. (2011) Bovine lactoferrin (LTF) gene promoter haplotypes have different basal transcriptional activities. Anim Genet 42(3): 270-209. doi:10.1111/j.1365-2052.2010.02151.x. PubMed: 21554347.