全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Upregulation of miR-135b Is Involved in the Impaired Osteogenic Differentiation of Mesenchymal Stem Cells Derived from Multiple Myeloma Patients

DOI: 10.1371/journal.pone.0079752

Full-Text   Cite this paper   Add to My Lib

Abstract:

Previous studies have demonstrated that mesenchymal stem cells from multiple myeloma (MM) patients (MM-hMSCs) display a distinctive gene expression profile, an enhanced production of cytokines and an impaired osteogenic differentiation ability compared to normal donors (ND-hMSCs). However, the underlying molecular mechanisms are unclear. In the present study, we observed that MM-hMSCs exhibited an abnormal upregulation of miR-135b, showing meanwhile an impaired osteogenic differentiation and a decrease of SMAD5 expression, which is the target of miR-135b involved in osteogenesis. By gain and loss of function studies we confirmed that miR-135b negatively regulated hMSCs osteogenesis. We also found that MM cell-produced factors stimulated ND-hMSCs to upregulate the expression of miR-135b. Importantly, treatment with a miR-135b inhibitor promoted osteogenic differentiation in MM-hMSCs. Finally, we observed that MM cell-derived soluble factors could induce an upregulation of miR-135b expression in ND-hMSCs in an indirect coculture system and the miR-135b expression turned to normal level after the removal of MM cells. Collectively, we provide evidence that miR-135b is involved in the impaired osteogenic differentiation of MSCs derived from MM patients and might therefore be a promising target for controlling bone disease.

References

[1]  Arnulf B, Lecourt S, Soulier J, Ternaux B, Lacassagne MN et al. (2007) Phenotypic and functional characterization of bone marrow mesenchymal stem cells derived from patients with multiple myeloma. Leukemia 21: 158-163. doi:10.1038/sj.leu.2404466. PubMed: 17096013.
[2]  Corre J, Mahtouk K, Attal M, Gadelorge M, Huynh A et al. (2007) Bone marrow mesenchymal stem cells are abnormal in multiple myeloma. Leukemia 21: 1079-1088. PubMed: 17344918.
[3]  Garderet L, Mazurier C, Chapel A, Ernou I, Boutin L et al. (2007) Mesenchymal stem cell abnormalities in patients with multiple myeloma. Leuk Lymphoma 48: 2032-2041. doi:10.1080/10428190701593644. PubMed: 17917971.
[4]  Garayoa M, Garcia JL, Santamaria C, Garcia-Gomez A, Blanco JF et al. (2009) Mesenchymal stem cells from multiple myeloma patients display distinct genomic profile as compared with those from normal donors. Leukemia 23: 1515-1527. doi:10.1038/leu.2009.65. PubMed: 19357701.
[5]  Xu S, Evans H, Buckle C, De Veirman K, Hu J et al. (2012) Impaired osteogenic differentiation of mesenchymal stem cells derived from multiple myeloma patients is associated with a blockade in the deactivation of the Notch signaling pathway. Leukemia 26: 2546-2549. doi:10.1038/leu.2012.126. PubMed: 22652628.
[6]  Gutiérrez NC, Sarasquete ME, Misiewicz-Krzeminska I, Delgado M, De Las Rivas J et al. (2010) Deregulation of microRNA expression in the different genetic subtypes of multiple myeloma and correlation with gene expression profiling. Leukemia 24: 629-637. doi:10.1038/leu.2009.274. PubMed: 20054351.
[7]  Pichiorri F, Suh SS, Ladetto M, Kuehl M, Palumbo T et al. (2008) MicroRNA regulate critical genes associated with multiple myeloma pathogenesis. Proc Natl Acad Sci U S A 105: 12885-12890. doi:10.1073/pnas.0806202105. PubMed: 18728182.
[8]  Guo L, Zhao RC, Wu Y (2011) The role of microRNAs in self-renewal and differentiation of mesenchymal stem cells. Exp Hematol 39: 608-616. doi:10.1016/j.exphem.2011.01.011. PubMed: 21288479.
[9]  Schoolmeesters A, Eklund T, Leake D, Vermeulen A, Smith Q et al. (2009) Functional profiling reveals critical role for miRNA in differentiation of human mesenchymal stem cells. PLOS ONE 4: e5605. doi:10.1371/journal.pone.0005605. PubMed: 19440384.
[10]  Hu W, Ye Y, Zhang W, Wang J, Chen A et al. (2012) miR?142?3p promotes osteoblast differentiation by modulating Wnt signaling. Mol Med Report doi: 10.3892/mmr.2012: 1207.
[11]  Zeng Y, Qu X, Li H, Huang S, Wang S et al. (2012) MicroRNA-100 regulates osteogenic differentiation of human adipose-derived mesenchymal stem cells by targeting BMPR2. FEBS Lett 586: 2375-2381. doi:10.1016/j.febslet.2012.05.049. PubMed: 22684006.
[12]  Wu T, Xie M, Wang X, Jiang X, Li J et al. (2012) miR-155 modulates TNF-α-inhibited osteogenic differentiation by targeting SOCS1 expression. Bone 51: 498-505. doi:10.1016/j.bone.2012.05.013. PubMed: 22634176.
[13]  Bae Y, Yang T, Zeng HC, Campeau PM, Chen Y et al. (2012) miRNA-34c regulates Notch signaling during bone development. Hum Mol Genet 21: 2991-3000. doi:10.1093/hmg/dds129. PubMed: 22498974.
[14]  Kim KM, Park SJ, Jung SH, Kim EJ, Jogeswar G et al. (2012) miR-182 is a negative regulator of osteoblast proliferation, differentiation, and skeletogenesis through targeting FoxO1. J Bone Miner Res 27: 1669-1679. doi:10.1002/jbmr.1604. PubMed: 22431396.
[15]  Schaap-Oziemlak AM, Raymakers RA, Bergevoet SM, Gilissen C, Jansen BJ et al. (2010) MicroRNA hsa-miR-135b regulates mineralization in osteogenic differentiation of human unrestricted somatic stem cells. Stem Cells Dev 19: 877-885. doi:10.1089/scd.2009.0112. PubMed: 19795981.
[16]  Huang S, Wang S, Bian C, Yang Z, Zhou H et al. (2012) Upregulation of miR-22 promotes osteogenic differentiation and inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells by repressing HDAC6 protein expression. Stem Cells Dev 21: 2531-2540. doi:10.1089/scd.2012.0014. PubMed: 22375943.
[17]  Mestdagh P, Feys T, Bernard N, Guenther S, Chen C et al. (2008) High-throughput stem-loop RT-qPCR miRNA expression profiling using minute amounts of input RNA. Nucleic Acids Res 36(21): e143. doi:10.1093/nar/gkn725. PubMed: 18940866.
[18]  Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8(2): R19. doi:10.1186/gb-2007-8-2-r19. PubMed: 17291332.
[19]  Mestdagh P, Van Vlierberghe P, De Weer A, Muth D, Westermann F et al. (2009) A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol 10(6): R64. doi:10.1186/gb-2009-10-6-r64. PubMed: 19531210.
[20]  Menu E, Kooijman R, Van Valckenborgh E, Asosingh K, Bakkus M et al. (2004) Specific roles for the PI3K and the MEK-ERK pathway in IGF-1-stimulated chemotaxis, VEGF secretion and proliferation of multiple myeloma cells: study in the 5T33MM model. Br J Cancer 90: 1076-1083. doi:10.1038/sj.bjc.6601613. PubMed: 14997210.
[21]  Matsuyama H, Suzuki HI, Nishimori H, Noguchi M, Yao T et al. (2011) miR-135b mediates NPM-ALK-driven oncogenicity and renders IL-17-producing immunophenotype to anaplastic large cell lymphoma. Blood 118: 6881-6892. doi:10.1182/blood-2011-05-354654. PubMed: 22042699.
[22]  Munding JB, Adai AT, Maghnouj A, Urbanik A, Z?llner H et al. (2012) Global microRNA expression profiling of microdissected tissues identifies miR-135b as a novel biomarker for pancreatic ductal adenocarcinoma. Int J Cancer 131: E86-E95. doi:10.1002/ijc.26466. PubMed: 21953293.
[23]  Jo DH, Kim JH, Park WY, Kim KW, Yu YS et al. (2011) Differential profiles of microRNAs in retinoblastoma cell lines of different proliferation and adherence patterns. J Pediatr Hematol/Oncol 33: 529-533. doi:10.1097/MPH.0b013e318228280a. PubMed: 21941147.
[24]  Zhu M, Yi M, Kim CH, Deng C, Li Y et al. (2011) Integrated miRNA and mRNA expression profiling of mouse mammary tumor models identifies miRNA signatures associated with mammary tumor lineage. Genome Biol 12: R77. doi:10.1186/gb-2011-12-8-r77. PubMed: 21846369.
[25]  Lv SQ, Kim YH, Giulio F, Shalaby T, Nobusawa S et al. (2012) Genetic Alterations in MicroRNAs in Medulloblastomas. Brain Pathol 22: 230-239. doi:10.1111/j.1750-3639.2011.00523.x. PubMed: 21793975.
[26]  Lulla RR, Costa FF, Bischof JM, Chou PM, de F, Bonaldo M et al. (2011) Identification of Differentially Expressed MicroRNAs in Osteosarcoma. Sarcoma, 2011: 2011:732690. PubMed: 21789031.
[27]  Bandrés E, Cubedo E, Agirre X, Malumbres R, Zárate R et al. (2006) Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer 5: 29. doi:10.1186/1476-4598-5-29. PubMed: 16854228.
[28]  Tong AW, Fulgham P, Jay C, Chen P, Khalil I et al. (2009) MicroRNA profile analysis of human prostate cancers. Cancer Gene Ther 16: 206-216. PubMed: 18949015.
[29]  Li Z, Hassan MQ, Volinia S, van Wijnen AJ, Stein JL et al. (2008) A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proc Natl Acad Sci U S A 105: 13906-13911. doi:10.1073/pnas.0804438105. PubMed: 18784367.
[30]  Zhang Y, Xie RL, Croce CM, Stein JL, Lian JB et al. (2011) A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2. Proc Natl Acad Sci U S A 108: 9863-9868. doi:10.1073/pnas.1018493108. PubMed: 21628588.
[31]  Xu S, Menu E, De Becker A, Van Camp B, Vanderkerken K et al. (2012) Bone marrow-derived mesenchymal stromal cells are attracted by multiple myeloma cell-produced chemokine CCL25 and favor myeloma cell growth in vitro and in vivo. Stem Cells 30: 266-279. doi:10.1002/stem.787. PubMed: 22102554.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133