全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Molecular Dynamics Simulations Reveal the HIV-1 Vpu Transmembrane Protein to Form Stable Pentamers

DOI: 10.1371/journal.pone.0079779

Full-Text   Cite this paper   Add to My Lib

Abstract:

The human immunodeficiency virus type I (HIV-1) Vpu protein is 81 residues long and has two cytoplasmic and one transmembrane (TM) helical domains. The TM domain oligomerizes to form a monovalent cation selective ion channel and facilitates viral release from host cells. Exactly how many TM domains oligomerize to form the pore is still not understood, with experimental studies indicating the existence of a variety of oligomerization states. In this study, molecular dynamics (MD) simulations were performed to investigate the propensity of the Vpu TM domain to exist in tetrameric, pentameric, and hexameric forms. Starting with an idealized α-helical representation of the TM domain, a thorough search for the possible orientations of the monomer units within each oligomeric form was carried out using replica-exchange MD simulations in an implicit membrane environment. Extensive simulations in a fully hydrated lipid bilayer environment on representative structures obtained from the above approach showed the pentamer to be the most stable oligomeric state, with interhelical van der Waals interactions being critical for stability of the pentamer. Atomic details of the factors responsible for stable pentamer structures are presented. The structural features of the pentamer models are consistent with existing experimental information on the ion channel activity, existence of a kink around the Ile17, and the location of tetherin binding residues. Ser23 is proposed to play an important role in ion channel activity of Vpu and possibly in virus propagation.

References

[1]  Greene WC, Peterlin BM (2002) Charting HIV's remarkable voyage through the cell: Basic science as a passport to future therapy. Nat Med 8: 673-680. doi:10.1038/nm0702-673. PubMed: 12091904.
[2]  Malim MH, Emerman M (2008) HIV-1 accessory proteins—ensuring viral survival in a hostile environment. Cell Host Microbe 3: 388-398. doi:10.1016/j.chom.2008.04.008. PubMed: 18541215.
[3]  Strebel K, Klimkait T, Martin MA (1988) A novel gene of HIV-1, vpu, and its 16-kilodalton product. Science 241: 1221-1223. doi:10.1126/science.3261888. PubMed: 3261888.
[4]  Cohen EA, Terwilliger EF, Sodroski JG, Haseltine WA (1988) Identification of a protein encoded by the vpu gene of HIV-1. Nature 334: 532-534. doi:10.1038/334532a0. PubMed: 3043230.
[5]  Schubert U, Ferrer-Montiel AV, Oblatt-Montal M, Henklein P, Strebel K et al. (1996) Identification of an ion channel activity of the Vpu transmembrane domain and its involvement in the regulation of virus release from HIV-1-infected cells. FEBS Lett 398: 12-18. doi:10.1016/S0014-5793(96)01146-5. PubMed: 8946945.
[6]  Ewart GD, Mills K, Cox GB, Gage PW (2002) Amiloride derivatives block ion channel activity and enhancement of virus-like particle budding caused by HIV-1 protein Vpu. Eur Biophys J 31: 26-35. doi:10.1007/s002490100177. PubMed: 12046895.
[7]  Ewart GD, Nasr N, Naif H, Cox GB, Cunningham AL et al. (2004) Potential new anti-human immunodeficiency virus type 1 compounds depress virus replication in cultured human macrophages. Antimicrob Agents Chemother 48: 2325-2330. doi:10.1128/AAC.48.6.2325-2330.2004. PubMed: 15155246.
[8]  Maldarelli F, Chen MY, Willey RL, Strebel K (1993) Human immunodeficiency virus type 1 Vpu protein is an oligomeric type I integral membrane protein. J Virol 67: 5056-5061. PubMed: 8331740.
[9]  Wray V, Federau T, Henklein P, Klabunde S, Kunert O et al. (1995) Solution structure of the hydrophilic region of HIV-1 encoded virus protein U (Vpu) by CD and 1H NMR spectroscopy. Int J Pept Protein Res 45: 35-43. PubMed: 7775007.
[10]  Federau T, Schubert U, Flossdorf J, Henklein P, Schomburg D et al. (1996) Solution structure of the cytoplasmic domain of the human immunodeficiency virus type 1 encoded virus protein U (Vpu). Int J Pept Protein Res 47: 297-310. PubMed: 8738656.
[11]  Willey RL, Maldarelli F, Martin MA, Strebel K (1992) Human immunodeficiency virus type 1 Vpu protein induces rapid degradation of CD4. J Virol 66: 7193-7200. PubMed: 1433512.
[12]  Schubert U, Bour S, Ferrer-Montiel AV, Montal M, Maldarell F et al. (1996) The two biological activities of human immunodeficiency virus type 1 Vpu protein involve two separable structural domains. J Virol 70: 809-819. PubMed: 8551619.
[13]  Schubert U, Schneider T, Henklein P, Hoffmann K, Berthold E et al. (1992) Human-immunodeficiency-virus-type-1-enco?dedVpu protein is phosphorylated by casein kinase II. Eur J Biochem 204: 875-883. doi:10.1111/j.1432-1033.1992.tb16707.x. PubMed: 1541298.
[14]  Schubert U, Strebel K (1994) Differential activities of the human immunodeficiency virus type 1-encoded Vpu protein are regulated by phosphorylation and occur in different cellular compartments. J Virol 68: 2260-2271. PubMed: 8139011.
[15]  Neil SJ, Zang T, Bieniasz PD (2008) Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451: 425-430. doi:10.1038/nature06553. PubMed: 18200009.
[16]  Vigan R, Neil SJ (2010) Determinants of tetherin antagonism in the transmembrane domain of the human immunodeficiency virus type 1 Vpu protein. J Virol 84: 12958-12970. doi:10.1128/JVI.01699-10. PubMed: 20926557.
[17]  Ewart GD, Sutherland T, Gage PW, Cox GB (1996) The Vpu protein of human immunodeficiency virus type 1 forms cation-selective ion channels. J Virol 70: 7108-7115. PubMed: 8794357.
[18]  Mehnert T, Routh A, Judge PJ, Lam YH, Fischer D et al. (2008) Biophysical characterization of Vpu from HIV-1 suggests a channel-pore dualism. Proteins 70: 1488-1497. PubMed: 17910056.
[19]  Hussain A, Das SR, Tanwar C, Jameel S (2007) Oligomerization of the human immunodeficiency virus type 1 (HIV-1) Vpu protein–a genetic, biochemical and biophysical analysis. Virol J 4: 81. doi:10.1186/1743-422X-4-81. PubMed: 17727710.
[20]  Lu JX, Sharpe S, Ghirlando R, Yau WM, Tycko R (2010) Oligomerization state and supramolecular structure of the HIV-1 Vpu protein transmembrane segment in phospholipid bilayers. Protein Sci 19: 1877-1896. doi:10.1002/pro.474. PubMed: 20669237.
[21]  Ma C, Marassi FM, Jones DH, Straus SK, Bour S et al. (2002) Expression, purification, and activities of full-length and truncated versions of the integral membrane protein Vpu from HIV-1. Protein Sci 11: 546-557. PubMed: 11847278.
[22]  Park SH, Mrse AA, Nevzorov AA, Mesleh MF, Oblatt-Montal M et al. (2003) Three-dimensional structure of the channel-forming trans-membrane domain of virus protein "u" (Vpu) from HIV-1. J Mol Biol 333: 409-424. doi:10.1016/j.jmb.2003.08.048. PubMed: 14529626.
[23]  Kukol A, Arkin IT (1999) Vpu transmembrane peptide structure obtained by site-specific fourier transform infrared dichroism and global molecular dynamics searching. Biophys J 77: 1594-1601. doi:10.1016/S0006-3495(99)77007-4. PubMed: 10465770.
[24]  Grice AL, Kerr ID, Sansom MSP (1997) Ion channels formed by HIV-1 Vpu: a modelling and simulation study. FEBS Lett 405: 299-304. doi:10.1016/S0014-5793(97)00198-1. PubMed: 9108308.
[25]  Moore PB, Zhong Q, Husslein T, Klein ML (1998) Simulation of the HIV-1 Vpu transmembrane domain as a pentameric bundle. FEBS Lett 431: 143-148. doi:10.1016/S0014-5793(98)00714-5. PubMed: 9708891.
[26]  Lopez CF, Montal M, Blasie JK, Klein ML, Moore PB (2002) Molecular dynamics investigation of membrane-bound bundles of the channel-forming transmembrane domain of viral protein U from the human immunodeficiency virus HIV-1. Biophys J 83: 1259-1267. doi:10.1016/S0006-3495(02)73898-8. PubMed: 12202353.
[27]  Cordes FS, Kukol A, Forrest LR, Arkin IT, Sansom MSP et al. (2001) The structure of the HIV-1 Vpu ion channel: modelling and simulation studies. Biochim Biophys Acta 1512: 29-298. PubMed: 11406106.
[28]  Lemaitre V, Ali R, Kim CG, Watts A, Fischer WB (2004) Interaction of amiloride and one of its derivatives with Vpu from HIV-1: a molecular dynamics simulation. FEBS Lett 563: 75-81. doi:10.1016/S0014-5793(04)00251-0. PubMed: 15063726.
[29]  Kim CG, Lemaitre V, Watts A, Fischer WB (2006) Drug-protein interaction with Vpu from HIV-1: proposing binding sites for amiloride and one of its derivatives. Anal Bioanal Chem 386: 2213-2217. doi:10.1007/s00216-006-0832-4. PubMed: 17082882.
[30]  Ulmschneider JP, Ulmschneider MB (2007) Folding simulations of the transmembrane helix of virus protein U in an implicit membrane model. J Chem Theory Comput 3: 2335-2346.
[31]  Patargias G, Martay H, Fischer WB (2009) Reconstructing potentials of mean force from short steered molecular dynamics simulations of Vpu from HIV-1. J Biomol Struct Dyn 27: 1-12. doi:10.1080/07391102.2009.10507291. PubMed: 19492858.
[32]  Kruger J, Fischer WB (2009) Assembly of viral membrane proteins. J Chem Theory Comput 5: 2503-2513.
[33]  Im W, Feig M, Brooks CL III (2003) An implicit membrane generalized Born theory for the study of structure, stability, and interactions of membrane proteins. Biophys J 85: 2900-2918. doi:10.1016/S0006-3495(03)74712-2. PubMed: 14581194.
[34]  Bu L, Im W, Brooks CL III (2007) Membrane assembly of simple helix homo-oligomers studied via molecular dynamics simulations. Biophys J 92: 854-863. doi:10.1529/biophysj.106.095216. PubMed: 17085501.
[35]  Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314: 141-151. doi:10.1016/S0009-2614(99)01123-9.
[36]  Im W, Lee MS, Brooks CL III (2003) Generalized Born model with a simple smoothing function. J Comput Chem 24: 1691-1702. doi:10.1002/jcc.10321. PubMed: 12964188.
[37]  Zhang Y, Lewis RNAH, McElhaney RN, Ryan RO (1993) Calorimetric and spectroscopic studies of the interaction of Manduca sexta apolipophorin III with zwitterionic, anionic, and nonionic lipids. Biochemistry 32: 3942-3952. doi:10.1021/bi00066a014. PubMed: 8471606.
[38]  Liu F, Lewis RNAH, Hodges RS, McElhaney RN (2004) Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylethanolamine bilayers. Biophys J 87: 2470-2482. doi:10.1529/biophysj.104.046342. PubMed: 15454444.
[39]  Saiz L, Bandyopadhyay S, Klein ML (2004) Effect of the pore region of a transmembrane ion channel on the physical properties of a simple membrane. J Phys Chem B 108: 2608–2613. doi:10.1021/jp0369793.
[40]  Deol SS, Bond PJ, Domene C, Sansom MSP (2004) Lipid-protein interactions of integral membrane proteins: a comparative simulation study. Biophys J 87: 3737-3749. doi:10.1529/biophysj.104.048397. PubMed: 15465855.
[41]  MacKenzie KR, Prestegard JH, Engelman DM (1997) A transmembrane helix dimer: structure and implications. Science 276: 131-133. doi:10.1126/science.276.5309.131. PubMed: 9082985.
[42]  Krüger J, Fischer WB (2010) Structural implications of mutations assessed by molecular dynamics: Vpu1-32 from HIV-1. Eur Biophys J 39: 1069-1077. doi:10.1007/s00249-009-0487-0. PubMed: 19506851.
[43]  Heginbotham L, Abramson T, MacKinnon R (1992) A functional connection between the pores of distantly related ion channels as revealed by mutant K+ channels. Science 258: 1152-1155. doi:10.1126/science.1279807. PubMed: 1279807.
[44]  Heginbotham L, Lu Z, Abramson T, MacKinnon R (1994) Mutations in the K+ channel signature sequence. Biophys J 66: 1061-1067. doi:10.1016/S0006-3495(94)80887-2. PubMed: 8038378.
[45]  Wray V, Kinder R, Federau T, Henklein P, Bechinger B et al. (1999) Solution structure and orientation of the transmembrane anchor domain of the HIV-1-encoded virus protein U by high-resolution and solid-state NMR spectroscopy. Biochemistry 38: 5272-5282. doi:10.1021/bi982755c. PubMed: 10213635.
[46]  Marassi FM, Ma C, Gratkowski H, Straus SK, Strebel K et al. (1999) Correlation of the structural and functional domains in the membrane protein Vpu from HIV-1. Proc Natl Acad Sci U_S_A 96: 14336-14341. doi:10.1073/pnas.96.25.14336. PubMed: 10588706.
[47]  Park SH, De Angelis AA, Nevzorov AA, Wu CH, Opella SJ (2006) Three-dimensional structure of the transmembrane domain of Vpu from HIV-1 in aligned phospholipid bicelles. Biophys J 91: 3032-3042. doi:10.1529/biophysj.106.087106. PubMed: 16861273.
[48]  Fischer WB, Forrest LR, Smith GR, Sansom MSP (2000) Transmembrane domains of viral ion channel proteins: a molecular dynamics simulation study. Biopolymers 53: 529-538. doi:10.1002/(SICI)1097-0282(200006)53:7. PubMed: 10766949.
[49]  Brooks BR, Bruccoleri R, Olafson B, States D, Swaminathan S et al. (1983) CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J Comput Phys 4: 187-217.
[50]  Brooks BR, Brooks CL III, MacKerell AD Jr, Nilsson L, Petrella RJ et al. (2009) CHARMM: The biomolecular simulation program. J Comput Chem 30: 1545-1614. doi:10.1002/jcc.21287. PubMed: 19444816.
[51]  MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck JD et al. (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102: 3586–3616. doi:10.1021/jp973084f.
[52]  MacKerell AD Jr, Feig M, Brooks CL III (2004) Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 25: 1400-1415. doi:10.1002/jcc.20065. PubMed: 15185334.
[53]  Schlitter J (1993) Estimation of absolute entropies of macromolecules using the covariance matrix. Chem Phys Lett 215: 617-621. doi:10.1016/0009-2614(93)89366-P.
[54]  Andricioaei I, Karplus M (2001) On the calculation of entropy from covariance matrices of the atomic fluctuations. J Chem Phys 115: 6289-6292. doi:10.1063/1.1401821.
[55]  Nose S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81: 511-519. doi:10.1063/1.447334.
[56]  Hoover WG (1985) Canonical dynamics: Equilibrium phase-space distributions. Phys Rev A 31: 1695-1697. doi:10.1103/PhysRevA.31.1695. PubMed: 9895674.
[57]  Jo S, Kim T, Im W (2007) Automated builder and database of protein/membrane complexes for molecular dynamics simulations. PLOS ONE 2: e880. doi:10.1371/journal.pone.0000880. PubMed: 17849009.
[58]  Jo S, Lim JB, Klauda JB, Im W (2009) CHARMM-GUI Membrane Builder for mixed bilayers and its application to yeast membranes. Biophys J 97: 50-58. doi:10.1016/j.bpj.2009.04.013. PubMed: 19580743.
[59]  Klauda JB, Venable RM, Freites JA, O'Connor JW, Tobias DJ et al. (2010) Update of the CHARMM all-atom additive force field for lipids: Validation on six lipid types. J Phys Chem B 114: 7830-7843. doi:10.1021/jp101759q. PubMed: 20496934.
[60]  Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79: 926-935. doi:10.1063/1.445869.
[61]  Essmann U, Perera L, Berkowitz M, Darden T, Lee H et al. (1995) A smooth particle mesh Ewald method. J Chem Phys 103: 8577-8593. doi:10.1063/1.470117.
[62]  Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equation of motions of a system with constraints: Molecular dynamics of n-alkanes. J Comput Chem 23: 327-341.
[63]  Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14: 33-38. doi:10.1016/0263-7855(96)00018-5. PubMed: 8744570.
[64]  Smart OS, Neduvelil JG, Wang X, Wallace BA, Sansom MSP (1996) HOLE: A program for the analysis of the pore dimensions of ion channel structural models. J Mol Graph 14: 354-360. doi:10.1016/S0263-7855(97)00009-X. PubMed: 9195488.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133