全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Protective Role of AMP-Activated Protein Kinase-Evoked Autophagy on an In Vitro Model of Ischemia/Reperfusion-Induced Renal Tubular Cell Injury

DOI: 10.1371/journal.pone.0079814

Full-Text   Cite this paper   Add to My Lib

Abstract:

Ischemia/reperfusion (I/R) injury is a common cause of injury to target organs such as brain, heart, and kidneys. Renal injury from I/R, which may occur in renal transplantation, surgery, trauma, or sepsis, is known to be an important cause of acute kidney injury. The detailed molecular mechanism of renal I/R injury is still not fully clear. Here, we investigate the role of AMP-activated protein kinase (AMPK)-evoked autophagy in the renal proximal tubular cell death in an in vitro I/R injury model. To mimic in vivo renal I/R injury, LLC-PK1 cells, a renal tubular cell line derived from pig kidney, were treated with antimycin A and 2-deoxyglucose to mimic ischemia injury followed by reperfusion with growth medium. This I/R injury model markedly induced apoptosis and autophagy in LLC-PK1 cells in a time-dependent manner. Autophagy inhibitor 3-methyladenine (3MA) significantly enhanced I/R injury-induced apoptosis. I/R could also up-regulate the phosphorylation of AMPK and down-regulate the phosphorylation of mammalian target of rapamycin (mTOR). Cells transfected with small hairpin RNA (shRNA) for AMPK significantly increased the phosphorylation of mTOR as well as decreased the induction of autophagy followed by enhancing cell apoptosis during I/R. Moreover, the mTOR inhibitor RAD001 significantly enhanced autophagy and attenuated cell apoptosis during I/R. Taken together, these findings suggest that autophagy induction protects renal tubular cell injury via an AMPK-regulated mTOR pathway in an in vitro I/R injury model. AMPK-evoked autophagy may be as a potential target for therapeutic intervention in I/R renal injury.

References

[1]  Tilney NL, Guttmann RD (1997) Effects of initial ischemia/reperfusion injury on the transplanted kidney. Transplantation 64: 945-947. doi:10.1097/00007890-199710150-00001. PubMed: 9381538.
[2]  Moens AL, Claeys MJ, Timmermans JP, Vrints CJ (2005) Myocardial ischemia/reperfusion-injury, a clinical view on a complex pathophysiological process. Int J Cardiol 100: 179-190. doi:10.1016/j.ijcard.2004.04.013. PubMed: 15823623.
[3]  Cryer HG (1997) Therapeutic approaches for clinical ischemia and reperfusion injury. Shock 8: 26-32. doi:10.1097/00024382-199707000-00005. PubMed: 9249909.
[4]  Matsuyama M, Yoshimura R (2004) Prospects of antisense oligodeoxynucleotides to alleviate renal ischaemia-reperfusion injury. Expert Opin Biol Ther 4: 1931-1937. doi:10.1517/14712598.4.12.1931. PubMed: 15571455.
[5]  Inal M, Altini?ik M, Bilgin MD (2002) The effect of quercetin on renal ischemia and reperfusion injury in the rat. Cell Biochem Funct 20: 291-296. doi:10.1002/cbf.953. PubMed: 12415562.
[6]  Molitoris BA (2004) Actin cytoskeleton in ischemic acute renal failure. Kidney Int 66: 871-883. doi:10.1111/j.1523-1755.2004.00818.x. PubMed: 15253754.
[7]  Woroniecki R, Ferdinand JR, Morrow JS, Devarajan P (2003) Dissociation of spectrin-ankyrin complex as a basis for loss of Na-K-ATPase polarity after ischemia. Am J Physiol Renal Physiol 284: F358-F364. PubMed: 12409278.
[8]  Castaneda MP, Swiatecka-Urban A, Mitsnefes MM, Feuerstein D, Kaskel FJ et al. (2003) Activation of mitochondrial apoptotic pathways in human renal allografts after ischemiareperfusion injury. Transplantation 76: 50-54. doi:10.1097/00007890-200308271-00096. PubMed: 12865785.
[9]  Park KM, Kramers C, Vayssier-Taussat M, Chen A, Bonventre JV (2002) Prevention of kidney ischemia/reperfusion-induced functional injury, MAPK and MAPK kinase activation, and inflammation by remote transient ureteral obstruction. J Biol Chem 277: 2040-2049. doi:10.1074/jbc.M107525200. PubMed: 11696540.
[10]  Meier-Kriesche HU, Ojo AO, Hanson JA, Kaplan B (2001) Exponentially increased risk of infectious death in older renal transplant recipients. Kidney Int 59: 1539-1543. doi:10.1046/j.1523-1755.2001.0590041539.x. PubMed: 11260418.
[11]  Okusa MD (2002) A(2A) adenosine receptor: a novel therapeutic target in renal disease. Am J Physiol Renal Physiol 282: F10-F18. PubMed: 11739107.
[12]  Wolf G, Ziyadeh FN, Thaiss F, Tomaszewski J, Caron RJ et al. (1997) Angiotensin II stimulates expression of the chemokine RANTES in rat glomerular endothelial cells. Role of the angiotensin type 2 receptor. J Clin Invest 100: 1047-1058. doi:10.1172/JCI119615. PubMed: 9276721.
[13]  Conger JD, Weil JV (1995) Abnormal vascular function following ischemia-reperfusion injury. J Investig Med 43: 431-442. PubMed: 8528754.
[14]  Stapleton D, Mitchelhill KI, Gao G, Widmer J, Michell BJ et al. (1996) Mammalian AMP-activated protein kinase subfamily. J Biol Chem 271: 611-614. doi:10.1074/jbc.271.2.611. PubMed: 8557660.
[15]  Sharma K, Ramachandrarao S, Qiu G, Usui HK, Zhu Y et al. (2008) Adiponectin regulates albuminuria and podocyte function in mice. J Clin Invest 118: 1645-1656. PubMed: 18431508.
[16]  Lee MJ, Feliers D, Mariappan MM, Sataranatarajan K, Mahimainathan L et al. (2007) A role for AMP-activated protein kinase in diabetes-induced renal hypertrophy. Am J Physiol Renal Physiol 292: F617-F627. PubMed: 17018841.
[17]  Takiar V, Nishio S, Seo-Mayer P, King JD Jr., Li H et al. (2011) Activating AMP-activated protein kinase (AMPK) slows renal cystogenesis. Proc Natl Acad Sci U S A 108: 2462-2467. doi:10.1073/pnas.1011498108. PubMed: 21262823.
[18]  Jin Q, Jhun BS, Lee SH, Lee J, Pi Y et al. (2004) Differential regulation of phosphatidylinositol 3-kinase/Akt, mitogen-activated protein kinase, and AMP-activated protein kinase pathways during menadione-induced oxidative stress in the kidney of young and old rats. Biochem Biophys Res Commun 315: 555-561. doi:10.1016/j.bbrc.2004.01.093. PubMed: 14975736.
[19]  Ahn YJ, Kim H, Lim H, Lee M, Kang Y et al. (2012) AMP-activated protein kinase: implications on ischemic diseases. BMB Rep 45: 489-495. doi:10.5483/BMBRep.2012.45.9.169. PubMed: 23010169.
[20]  Gonon AT, Widegren U, Bulhak A, Salehzadeh F, Persson J et al. (2008) Adiponectin protects against myocardial ischaemia-reperfusion injury via AMP-activated protein kinase, Akt, and nitric oxide. Cardiovasc Res 78: 116-122. doi:10.1093/cvr/cvn017. PubMed: 18222959.
[21]  Bolster DR, Crozier SJ, Kimball SR, Jefferson LS (2002) AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. J Biol Chem 277: 23977-23980. doi:10.1074/jbc.C200171200. PubMed: 11997383.
[22]  Menendez JA, Vellon L, Oliveras-Ferraros C, Cufí S, Vazquez-Martin A (2011) mTOR-regulated senescence and autophagy during reprogramming of somatic cells to pluripotency: a roadmap from energy metabolism to stem cell renewal and aging. Cell Cycle 10: 3658-3677. doi:10.4161/cc.10.21.18128. PubMed: 22052357.
[23]  Meley D, Bauvy C, Houben-Weerts JH, Dubbelhuis PF, Helmond MT et al. (2006) AMP-activated protein kinase and the regulation of autophagic proteolysis. J Biol Chem 281: 34870-34879. doi:10.1074/jbc.M605488200. PubMed: 16990266.
[24]  Inoki K, Kim J, Guan KL (2012) AMPK and mTOR in cellular energy homeostasis and drug targets. Annu Rev Pharmacol Toxicol 52: 381-400. doi:10.1146/annurev-pharmtox-010611-134537. PubMed: 22017684.
[25]  Calvert JW, Gundewar S, Jha S, Greer JJ, Bestermann WH et al. (2008) Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS-mediated signaling. Diabetes 57: 696-705. doi:10.2337/db07-1098. PubMed: 18083782.
[26]  Jiang M, Liu K, Luo J, Dong Z (2010) Autophagy is a renoprotective mechanism during in vitro hypoxia and in vivo ischemia-reperfusion injury. Am J Pathol 176: 1181-1192. doi:10.2353/ajpath.2010.090594. PubMed: 20075199.
[27]  Xie J, Guo Q (2006) Apoptosis antagonizing transcription factor protects renal tubule cells against oxidative damage and apoptosis induced by ischemia-reperfusion. J Am Soc Nephrol 17: 3336-3346. doi:10.1681/ASN.2006040311. PubMed: 17065240.
[28]  Lee HT, Emala CW (2002) Preconditioning and adenosine protect human proximal tubule cells in an in vitro model of ischemic injury. J Am Soc Nephrol 13: 2753-2761. doi:10.1097/01.ASN.0000032421.79225.6E. PubMed: 12397046.
[29]  Yen YP, Tsai KS, Chen YW, Huang CF, Yang RS et al. (2012) Arsenic induces apoptosis in myoblasts through a reactive oxygen species-induced endoplasmic reticulum stress and mitochondrial dysfunction pathway. Arch Toxicol 86: 923-933. doi:10.1007/s00204-012-0864-9. PubMed: 22622864.
[30]  Wu CT, Sheu ML, Tsai KS, Weng TI, Chiang CK et al. (2010) The role of endoplasmic reticulum stress-related unfolded protein response in the radiocontrast medium-induced renal tubular cell injury. Toxicol Sci 114: 295-301. doi:10.1093/toxsci/kfq006. PubMed: 20071420.
[31]  Lu J, Chiang J, Iyer RR, Thompson E, Kaneski CR et al. (2010) Decreased glucocerebrosidase activity in Gaucher disease parallels quantitative enzyme loss due to abnormal interaction with TCP1 and c-Cbl. Proc Natl Acad Sci U S A 107: 21665-21670. doi:10.1073/pnas.1014376107. PubMed: 21098288.
[32]  Chiang CK, Sheu ML, Lin YW, Wu CT, Yang CC et al. (2011) Honokiol ameliorates renal fibrosis by inhibiting extracellular matrix and pro-inflammatory factors in vivo and in vitro. Br J Pharmacol 163: 586-597. doi:10.1111/j.1476-5381.2011.01242.x. PubMed: 21265825.
[33]  Mizushima N, Yoshimori T (2007) How to interpret LC3 immunoblotting. Autophagy 3: 542-545. PubMed: 17611390.
[34]  Munafó DB, Colombo MI (2001) A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation. J Cell Sci 114: 3619-3629. PubMed: 11707514.
[35]  Seglen PO, Gordon PB (1982) 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci U S A 79: 1889-1892. doi:10.1073/pnas.79.6.1889. PubMed: 6952238.
[36]  Takagi H, Matsui Y, Hirotani S, Sakoda H, Asano T et al. (2007) AMPK mediates autophagy during myocardial ischemia in vivo. Autophagy 3: 405-407. PubMed: 17471015.
[37]  Kosieradzki M, Rowiński W (2008) Ischemia/reperfusion injury in kidney transplantation: mechanisms and prevention. Transplant Proc 40: 3279-3288. doi:10.1016/j.transproceed.2008.10.004. PubMed: 19100373.
[38]  Xie Z, Lau K, Eby B, Lozano P, He C et al. (2011) Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes 60: 1770-1778. doi:10.2337/db10-0351. PubMed: 21562078.
[39]  Xie Z, He C, Zou MH (2011) AMP-activated protein kinase modulates cardiac autophagy in diabetic cardiomyopathy. Autophagy 7: 1254-1255. doi:10.4161/auto.7.10.16740. PubMed: 21685727.
[40]  Baehrecke EH (2005) Autophagy: dual roles in life and death? Nat Rev Mol Cell Biol 6: 505-510. doi:10.1038/nrm1666. PubMed: 15928714.
[41]  Xu M, Zhang HL (2011) Death and survival of neuronal and astrocytic cells in ischemic brain injury: a role of autophagy. Acta Pharmacol Sin 32: 1089-1099. doi:10.1038/aps.2011.50. PubMed: 21804578.
[42]  Periyasamy-Thandavan S, Jiang M, Schoenlein P, Dong Z (2009) Autophagy: molecular machinery, regulation, and implications for renal pathophysiology. Am J Physiol Renal Physiol 297: F244-F256. doi:10.1152/ajprenal.00033.2009. PubMed: 19279132.
[43]  Liang J, Shao SH, Xu ZX, Hennessy B, Ding Z et al. (2007) The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol 9: 218-224. doi:10.1038/ncb1537. PubMed: 17237771.
[44]  Herrero-Martín G, H?yer-Hansen M, García-García C, Fumarola C, Farkas T et al. (2009) TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO J 28: 677-685. doi:10.1038/emboj.2009.8. PubMed: 19197243.
[45]  Jeyaraj SC, Dakhlallah D, Hill SR, Lee BS (2006) Expression and distribution of HuR during ATP depletion and recovery in proximal tubule cells. Am J Physiol Renal Physiol 291: F1255-F1263. doi:10.1152/ajpheart.01303.2005. PubMed: 16788138.
[46]  Kolyada AY, Liangos O, Madias NE, Jaber BL (2008) Protective effect of erythropoietin against radiocontrast-induced renal tubular epithelial cell injury. Am J Nephrol 28: 203-209. doi:10.1159/000110089. PubMed: 17960058.
[47]  Andreucci M, Michael A, Kramers C, Park KM, Chen A et al. (2003) Renal ischemia/reperfusion and ATP depletion/repletion in LLC-PK(1) cells result in phosphorylation of FKHR and FKHRL1. Kidney Int 64: 1189-1198. doi:10.1046/j.1523-1755.2003.00204.x. PubMed: 12969136.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133