Addition of Exogenous NAD+ Prevents Mefloquine-Induced Neuroaxonal and Hair Cell Degeneration through Reduction of Caspase-3-Mediated Apoptosis in Cochlear Organotypic Cultures
Background Mefloquine is widely used for the treatment of malaria. However, this drug is known to induce neurological side effects including depression, anxiety, balance disorder, and sensorineural hearing loss. Yet, there is currently no treatment for these side effects. Principal Findings In this study, we show that the coenzyme NAD+, known to play a critical role in maintaining the appropriate cellular redox environment, protects cochlear axons and sensory hair cells from mefloquine-induced degeneration in cultured rat cochleae. Mefloquine alone destroyed hair cells and nerve fiber axons in rat cochlear organotypics cultures in a dose-dependent manner, while treatment with NAD+ protected axons and hair cells from mefloquine-induced degeneration. Furthermore, cochlear organs treated with mefloquine showed increased oxidative stress marker levels, including superoxide and protein carbonyl, and increased apoptosis marker levels, including TUNEL-positive nuclei and caspases-3. Treatment with NAD+ reduced the levels of these oxidative stress and apoptosis markers. Conclusions/Significance Taken together, our findings suggest that that mefloquine disrupts the cellular redox environment and induces oxidative stress in cochlear hair cells and nerve fibers leading to caspases-3-mediated apoptosis of these structures. Exogenous NAD+ suppresses mefloquine-induced oxidative stress and prevents the degeneration of cochlear axons and sensory hair cells caused by mefloquine treatment.
References
[1]
Fischer LR, Culver DG, Tennant P, Davis AA, Wang M et al. (2004) Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp Neurol 185: 232-240. doi:10.1016/j.expneurol.2003.10.004. PubMed: 14736504.
[2]
Raff MC, Whitmore AV, Finn JT (2002) Axonal self-destruction and neurodegeneration. Science 296: 868-871. doi:10.1126/science.1068613. PubMed: 11988563.
[3]
Stokin GB, Lillo C, Falzone TL, Brusch RG, Rockenstein E et al. (2005) Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease. Science 307: 1282-1288. doi:10.1126/science.1105681. PubMed: 15731448.
[4]
Simpson JA, Price R, ter Kuile F, Teja-Isavatharm P, Nosten F et al. (1999) Population pharmacokinetics of mefloquine in patients with acute falciparum malaria. Clin Pharmacol Ther 66: 472-484. doi:10.1016/S0009-9236(99)70010-X. PubMed: 10579474.
[5]
Kollaritsch H, Karbwang J, Wiedermann G, Mikolasek A, Na-Bangchang K, et al. (2000) Mefloquine concentration profiles during prophylactic dose regimens. Wien Klin Wochenschr 112: 441-447.
[6]
Crawley J, Nahlen B (2004) Prevention and treatment of malaria in young African children. Semin Pediatr Infect Dis 15: 169-180. doi:10.1053/j.spid.2004.05.009. PubMed: 15480963.
[7]
Fusetti M, Eibenstein A, Corridore V, Hueck S, Chiti-Batelli S (1999) [Mefloquine and ototoxicity: a report of 3 cases]. Clin Ter 150: 379-382.
[8]
Toovey S (2009) Mefloquine neurotoxicity: a literature review. Travel Med Infect Dis 7: 2-6. doi:10.1016/j.tmaid.2008.12.004. PubMed: 19174293.
[9]
Weinke T, Trautmann M, Held T, Weber G, Eichenlaub D et al. (1991) Neuropsychiatric side effects after the use of mefloquine. Am J Trop Med Hyg 45: 86-91. PubMed: 1867351.
[10]
Ding D, Qi W, Yu D, Jiang H, Salvi R (2009) Ototoxic effects of mefloquine in cochlear organotypic cultures. J of Otol 4: 29-38.
[11]
Ding D, Someya S, Jiang H, Qi W, Yu D et al. (2011) Detection of apoptosis by RT-PCR array in mefloquine-induced cochlear damage. J of Otol 6: 1-9.
[12]
Ding D, Someya S, Tanokura M, Jiang H, Salvi R (2013) NAD attenuates mefloquine-induced cochlear damage from reactive oxygen species. Abstr Assoc Res Otolaryngol.
[13]
Yu D, Ding D, Jiang H, Stolzberg D, Salvi R (2011) Mefloquine damage vestibular hair cells in organotypic cultures. Neurotox Res 20: 51-58. doi:10.1007/s12640-010-9221-z. PubMed: 20859773.
[14]
Dow GS, Hudson TH, Vahey M, Koenig ML (2003) The acute neurotoxicity of mefloquine may be mediated through a disruption of calcium homeostasis and ER function in vitro. Malar J 2: 14. doi:10.1186/1475-2875-2-14. PubMed: 12848898.
[15]
Hood JE, Jenkins JW, Milatovic D, Rongzhu L, Aschner M (2010) Mefloquine induces oxidative stress and neurodegeneration in primary rat cortical neurons. Neurotoxicology 31: 518-523. doi:10.1016/j.neuro.2010.05.005. PubMed: 20562019.
[16]
Navaratna S, Hamblett I, Tonnesen HH (2000) Photoreactivity of biologically active compounds. XVI. Formation and reactivity of free radicals in mefloquine. J Photochem Photobiol B Biol 56: 25-38. doi:10.1016/S1011-1344(00)00056-7.
[17]
Kaneko S, Wang J, Kaneko M, Yiu G, Hurrell JM et al. (2006) Protecting axonal degeneration by increasing nicotinamide adenine dinucleotide levels in experimental autoimmune encephalomyelitis models. J Neurosci 26: 9794-9804. doi:10.1523/JNEUROSCI.2116-06.2006. PubMed: 16988050.
[18]
Sasaki Y, Araki T, Milbrandt J (2006) Stimulation of nicotinamide adenine dinucleotide biosynthetic pathways delays axonal degeneration after axotomy. J Neurosci 26: 8484-8491. doi:10.1523/JNEUROSCI.2320-06.2006. PubMed: 16914673.
[19]
Luo J, Nikolaev AY, Imai S, Chen D, Su F et al. (2001) Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107: 137-148. doi:10.1016/S0092-8674(01)00524-4. PubMed: 11672522.
[20]
Klaidman L, Morales M, Kem S, Yang J, Chang ML et al. (2003) Nicotinamide offers multiple protective mechanisms in stroke as a precursor for NAD+, as a PARP inhibitor and by partial restoration of mitochondrial function. Pharmacologist 69: 150-157. PubMed: 14512702.
[21]
Sadanaga-Akiyoshi F, Yao H, Tanuma S, Nakahara T, Hong JS et al. (2003) Nicotinamide attenuates focal ischemic brain injury in rats: with special reference to changes in nicotinamide and NAD+ levels in ischemic core and penumbra. Neurochem Res 28: 1227-1234. doi:10.1023/A:1024236614015. PubMed: 12834263.
[22]
Zhang JG, Lindup WE (1996) Differential effects of cisplatin on the production of NADH-dependent superoxide and the activity of antioxidant enzymes in rat renal cortical slices in vitro. Pharmacol Toxicol 79: 191-198. doi:10.1111/j.1600-0773.1996.tb02087.x. PubMed: 8899860.
[23]
Kawai Y, Nakao T, Kunimura N, Kohda Y, Gemba M (2006) Relationship of intracellular calcium and oxygen radicals to Cisplatin-related renal cell injury. J Pharmacol Sci 100: 65-72. doi:10.1254/jphs.FP0050661. PubMed: 16410676.
[24]
Hipkiss AR (2010) Aging, Proteotoxicity, Mitochondria, Glycation, NAD and Carnosine: Possible Inter-Relationships and Resolution of the Oxygen Paradox. Front Aging Neurosci 2: 10. PubMed: 20552048.
[25]
Ding D, He J, Allman BL, Yu D, Jiang H et al. (2011) Cisplatin ototoxicity in rat cochlear organotypic cultures. Hear Res 282: 196-203. doi:10.1016/j.heares.2011.08.002. PubMed: 21854840.
[26]
Ding D, Jiang H, Fu Y, Salvi R, Someya S et al. (2012) Ototoxic effects of carboplatin in cochlear organotypic cultures in chinchillas and rats. J of Otol 7: 92-101.
[27]
Ding D, Stracher A, Salvi RJ (2002) Leupeptin protects cochlear and vestibular hair cells from gentamicin ototoxicity. Hear Res 164: 115-126. doi:10.1016/S0378-5955(01)00417-8. PubMed: 11950531.
[28]
Fu Y, Ding D, Jiang H, Salvi R (2012) Ouabain-induced cochlear degeneration in rat. Neurotox Res 22: 158-169. doi:10.1007/s12640-012-9320-0. PubMed: 22476946.
[29]
Ding D, Li M, Zheng X, Wang J, Salvi RJ (1999) [Cochleogram for assessing hair cells and efferent fibers in carboplatin-treated ear]. Lin Chuang Er Bi Yan Hou Ke Za Zhi 13: 510-512. PubMed: 12541378.
[30]
Ding D, McFadden S, Salvi RJ (2001) Cochlear hair cell densities and inner-ear staining techniques. James F Willott Handbook of Mouse Auditory Research CRS Press Florida: 189-204.
[31]
Ding D, Roth J, Salvi R (2011) Manganese is toxic to spiral ganglion neurons and hair cells in vitro. Neurotoxicology 32: 233-241. doi:10.1016/j.neuro.2010.12.003. PubMed: 21182863.
[32]
Ding D, Allman A, Yin S, Sun H, Salvi RJ (2011) Cisplatin ototoxicity Nova Science Publishers, Inc Chapter 2: 39-63.
Ding D, Jiang H, Wang P, Salvi R (2007) Cell death after co-administration of cisplatin and ethacrynic acid. Hear Res 226: 129-139. doi:10.1016/j.heares.2006.07.015. PubMed: 16978814.
[35]
Ding D, Salvi R (2005) Review of cellular changes in the cochlea due to aminoglycoside antibiotics. Volta Rev 105: 407-438.
[36]
Yang H, Yang T, Baur JA, Perez E, Matsui T et al. (2007) Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell 130: 1095-1107. doi:10.1016/j.cell.2007.07.035. PubMed: 17889652.
Someya S, Xu J, Kondo K, Ding D, Salvi RJ et al. (2009) Age-related hearing loss in C57BL/6J mice is mediated by Bak-dependent mitochondrial apoptosis. Proc Natl Acad Sci U S A 106: 19432-19437. doi:10.1073/pnas.0908786106. PubMed: 19901338.
[39]
Someya S, Yu W, Hallows WC, Xu J, Vann JM et al. (2010) Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143: 802-812. doi:10.1016/j.cell.2010.10.002. PubMed: 21094524.
[40]
Araki T, Sasaki Y, Milbrandt J (2004) Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 305: 1010-1013. doi:10.1126/science.1098014. PubMed: 15310905.
[41]
Wang H, Shen Z, Yao Z, Luo Y, Zhang Y et al. (2001) [Surgical treatment and reconstruction for the patients with advanced-stage tonsillar cancer]. Lin Chuang Er Bi Yan Hou Ke Za Zhi 15: 261-262. PubMed: 12541776.
[42]
Sakamoto J, Miura T, Shimamoto K, Horio Y (2004) Predominant expression of Sir2alpha, an NAD-dependent histone deacetylase, in the embryonic mouse heart and brain. FEBS Lett 556: 281-286. doi:10.1016/S0014-5793(03)01444-3. PubMed: 14706864.
[43]
Smith J (2002) Human Sir2 and the 'silencing' of p53 activity. Trends Cell Biol 12: 404-406. doi:10.1016/S0962-8924(02)02342-5. PubMed: 12220851.
[44]
Tanno M, Sakamoto J, Miura T, Shimamoto K, Horio Y (2007) Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J Biol Chem 282: 6823-6832. PubMed: 17197703.
[45]
Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA et al. (2001) hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107: 149-159. doi:10.1016/S0092-8674(01)00527-X. PubMed: 11672523.
[46]
Motta MC, Divecha N, Lemieux M, Kamel C, Chen D et al. (2004) Mammalian SIRT1 represses forkhead transcription factors. Cell 116: 551-563. doi:10.1016/S0092-8674(04)00126-6. PubMed: 14980222.
[47]
Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL et al. (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303: 2011-2015. doi:10.1126/science.1094637. PubMed: 14976264.
[48]
Piskunova TS, Yurova MN, Ovsyannikov AI, Semenchenko AV, Zabezhinski MA et al. (2008) Deficiency in Poly(ADP-ribose) Polymerase-1 (PARP-1) Accelerates Aging and Spontaneous Carcinogenesis in Mice. Curr Gerontol Geriatr Res: 754190. PubMed: 19415146.
[49]
Oliver FJ, Menissier-de Murcia J, de Murcia G (1999) Poly(ADP-ribose) polymerase in the cellular response to DNA damage, apoptosis, and disease. Am J Hum Genet 64: 1282-1288. doi:10.1086/302389. PubMed: 10205258.
[50]
Diaz-Hernandez JI, Moncada S, Bola?os JP, Almeida A (2007) Poly(ADP-ribose) polymerase-1 protects neurons against apoptosis induced by oxidative stress. Cell Death Differ 14: 1211-1221. doi:10.1038/sj.cdd.4402117. PubMed: 17347665.
[51]
Wang J, Zhai Q, Chen Y, Lin E, Gu W et al. (2005) A local mechanism mediates NAD-dependent protection of axon degeneration. J Cell Biol 170: 349-355. doi:10.1083/jcb.200504028. PubMed: 16043516.
[52]
Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9: 47-59. doi:10.1038/nrm2308. PubMed: 18097445.
[53]
Yuan J, Yankner BA (2000) Apoptosis in the nervous system. Nature 407: 802-809. doi:10.1038/35037739. PubMed: 11048732.
[54]
Mattson MP, Culmsee C, Yu ZF (2000) Apoptotic and antiapoptotic mechanisms in stroke. Cell Tissue Res 301: 173-187. doi:10.1007/s004419900154. PubMed: 10928290.
[55]
Barennes H, Balima-Koussoubé T, Nagot N, Charpentier JC, Pussard E (2006) Safety and efficacy of rectal compared with intramuscular quinine for the early treatment of moderately severe malaria in children: randomised clinical trial. BMJ 332: 1055-1059. doi:10.1136/bmj.332.7549.1055. PubMed: 16675812.
[56]
Wagener FA, Volk HD, Willis D, Abraham NG, Soares MP et al. (2003) Different faces of the heme-heme oxygenase system in inflammation. Pharmacol Rev 55: 551-571. doi:10.1124/pr.55.3.5. PubMed: 12869663.
[57]
Milatovic D, Jenkins JW, Hood JE, Yu Y, Lu R et al. (2011) Mefloquine neurotoxicity is mediated by non-receptor tyrosine kinase. Neurotoxicology 32: 578-585. doi:10.1016/j.neuro.2011.01.001. PubMed: 21241737.