全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Association of HDL-Related Loci with Age-Related Macular Degeneration and Plasma Lutein and Zeaxanthin: the Alienor Study

DOI: 10.1371/journal.pone.0079848

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Several genes implicated in high-density lipoprotein (HDL) metabolism have been reported to be associated with age-related macular degeneration (AMD). Furthermore, HDL transport the two carotenoids, lutein and zeaxanthin, which are highly suspected to play a key-role in the protection against AMD. The objective is to confirm the associations of HDL-related loci with AMD and to assess their associations with plasma lutein and zeaxanthin concentrations. Methods Alienor study is a prospective population-based study on nutrition and age-related eye diseases performed in 963 elderly residents of Bordeaux, France. AMD was graded according to the international classification, from non-mydriatic colour retinal photographs. Plasma lutein and zeaxanthin were determined by normal-phase high-performance liquid chromatography. The following polymorphisms were studied: rs493258 and rs10468017 (LIPC), rs3764261 (CETP), rs12678919 (LPL) and rs1883025 (ABCA1). Results After multivariate adjustment, the TT genotype of the LIPC rs493258 variant was significantly associated with a reduced risk for early and late AMD (OR=0.64, 95%CI: 0.41-0.99; p=0.049 and OR=0.26, 95%CI: 0.08-0.85; p=0.03, respectively), and with higher plasma zeaxanthin concentrations (p=0.03), while plasma lipids were not significantly different according to this SNP. Besides, the LPL variant was associated with early AMD (OR=0.67, 95%CI: 0.45-1.00; p=0.05) and both with plasma lipids and plasma lutein (p=0.047). Associations of LIPC rs10468017, CETP and ABCA1 polymorphisms with AMD did not reach statistical significance. Conclusion These findings suggest that LIPC and LPL genes could both modify the risk for AMD and the metabolism of lutein and zeaxanthin.

References

[1]  Resnikoff S, Pascolini D, Etya'ale D, Kocur I, Pararajasegaram R et al. (2004) Global data on visual impairment in the year 2002. Bull World Health Organ 82: 844-851. PubMed: 15640920.
[2]  Augood CA, Vingerling JR, de Jong PT, Chakravarthy U, Seland J et al. (2006) Prevalence of age-related maculopathy in older Europeans: the European Eye Study (EUREYE). Arch Ophthalmol 124: 529-535. doi:10.1001/archopht.124.4.529. PubMed: 16606879.
[3]  Friedman DS, O'Colmain BJ, Mu?oz B, Tomany SC, McCarty C et al. (2004) Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol 122: 564-572. doi:10.1001/archopht.122.4.564. PubMed: 15078675.
[4]  Lim LS, Mitchell P, Seddon JM, Holz FG, Wong TY (2012) Age-related macular degeneration. Lancet 379: 1728-1738. doi:10.1016/S0140-6736(12)60282-7. PubMed: 22559899.
[5]  Chong EW, Kreis AJ, Wong TY, Simpson JA, Guymer RH (2008) Dietary omega-3 fatty acid and fish intake in the primary prevention of age-related macular degeneration: a systematic review and meta-analysis. Arch Ophthalmol 126: 826-833. doi:10.1001/archopht.126.6.826. PubMed: 18541848.
[6]  Thornton J, Edwards R, Mitchell P, Harrison RA, Buchan I et al. (2005) Smoking and age-related macular degeneration: a review of association. Eye 19: 935-944. doi:10.1038/sj.eye.6701978. PubMed: 16151432.
[7]  Chan D (1998) Cigarette smoking and age-related macular degeneration. Optom Vis Sci 75: 476-484. doi:10.1097/00006324-199807000-00015. PubMed: 9703035.
[8]  van Leeuwen R, Boekhoorn S, Vingerling JR, Witteman JC, Klaver CC et al. (2005) Dietary intake of antioxidants and risk of age-related macular degeneration. JAMA 294: 3101-3107. doi:10.1001/jama.294.24.3101. PubMed: 16380590.
[9]  Kijlstra A, Tian Y, Kelly ER, Berendschot TT (2012) Lutein: more than just a filter for blue light. Prog Retin Eye Res 31: 303-315. doi:10.1016/j.preteyeres.2012.03.002. PubMed: 22465791.
[10]  Whitehead AJ, Mares JA, Danis RP (2006) Macular pigment: a review of current knowledge. Arch Ophthalmol 124: 1038-1045. doi:10.1001/archopht.124.7.1038. PubMed: 16832030.
[11]  Delcourt C, Carrière I, Delage M, Barberger-Gateau P, Schalch W (2006) Plasma lutein and zeaxanthin and other carotenoids as modifiable risk factors for age-related maculopathy and cataract: the POLA Study. Invest Ophthalmol Vis Sci 47: 2329-2335. doi:10.1167/iovs.05-1235. PubMed: 16723441.
[12]  (1993) Antioxidant status and neovascular age-related macular degeneration. Eye Disease Case. -control study group. Arch Ophthalmol 111: 104-109.
[13]  Gale CR, Hall NF, Phillips DI, Martyn CN (2003) Lutein and zeaxanthin status and risk of age-related macular degeneration. Invest Ophthalmol Vis Sci 44: 2461-2465. doi:10.1167/iovs.02-0929. PubMed: 12766044.
[14]  Ma L, Dou HL, Wu YQ, Huang YM, Huang YB et al. (2012) Lutein and zeaxanthin intake and the risk of age-related macular degeneration: a systematic review and meta-analysis. Br J Nutr 107: 350-359. doi:10.1017/S0007114511004260. PubMed: 21899805.
[15]  Clevidence BA, Bieri JG (1993) Association of carotenoids with human plasma lipoproteins. Methods Enzymol 214: 33-46. doi:10.1016/0076-6879(93)14051-J. PubMed: 8469147.
[16]  Borel P (2012) Genetic variations involved in interindividual variability in carotenoid status. Mol Nutr Food Res 56: 228-240. doi:10.1002/mnfr.201100322. PubMed: 21957063.
[17]  Borel P, de Edelenyi FS, Vincent-Baudry S, Malezet-Desmoulin C, Margotat A et al. (2011) Genetic variants in BCMO1 and CD36 are associated with plasma lutein concentrations and macular pigment optical density in humans. Ann Med 43: 47-59. doi:10.3109/07853890.2011.586359. PubMed: 21091228.
[18]  Borel P, Moussa M, Reboul E, Lyan B, Defoort C et al. (2009) Human fasting plasma concentrations of vitamin E and carotenoids, and their association with genetic variants in apo C-III, cholesteryl ester transfer protein, hepatic lipase, intestinal fatty acid binding protein and microsomal triacylglycerol transfer protein. Br J Nutr 101: 680-687. doi:10.1017/S0007114508030754. PubMed: 18662427.
[19]  Chen W, Stambolian D, Edwards AO, Branham KE, Othman M et al. (2010) Genetic variants near TIMP3 and high-density lipoprotein-associated loci influence susceptibility to age-related macular degeneration. Proc Natl Acad Sci U S A 107: 7401-7406. doi:10.1073/pnas.0912702107. PubMed: 20385819.
[20]  Neale BM, Fagerness J, Reynolds R, Sobrin L, Parker M et al. (2010) Genome-wide association study of advanced age-related macular degeneration identifies a role of the hepatic lipase gene (LIPC). Proc Natl Acad Sci U S A 107: 7395-7400. doi:10.1073/pnas.0912019107. PubMed: 20385826.
[21]  Yu Y, Reynolds R, Fagerness J, Rosner B, Daly MJ et al. (2011) Association of variants in the LIPC and ABCA1 genes with intermediate and large drusen and advanced age-related macular degeneration. Invest Ophthalmol Vis Sci 52: 4663-4670. doi:10.1167/iovs.10-7070. PubMed: 21447678.
[22]  Yu Y, Bhangale TR, Fagerness J, Ripke S, Thorleifsson G et al. (2011) Common variants near FRK/COL10A1 and VEGFA are associated with advanced age-related macular degeneration. Hum Mol Genet 20: 3699-3709. doi:10.1093/hmg/ddr270. PubMed: 21665990.
[23]  Sobrin L, Reynolds R, Yu Y, Fagerness J, Leveziel N et al. (2011) ARMS2/HTRA1 locus can confer differential susceptibility to the advanced subtypes of age-related macular degeneration. Am J Ophthalmol 151: 345-352 e343 doi:10.1016/j.ajo.2010.08.015. PubMed: 21122828.
[24]  Peter I, Huggins GS, Ordovas JM, Haan M, Seddon JM (2011) Evaluation of new and established age-related macular degeneration susceptibility genes in the Women's Health Initiative Sight Exam (WHI-SE) Study. Am J Ophthalmol 152: 1005-1013 e1001 doi:10.1016/j.ajo.2011.05.016. PubMed: 21906714.
[25]  Seddon JM, Reynolds R, Rosner B (2010) Associations of smoking, body mass index, dietary lutein, and the LIPC gene variant rs10468017 with advanced age-related macular degeneration. Mol Vis 16: 2412-2424. PubMed: 21139980.
[26]  Reynolds R, Rosner B, Seddon JM (2010) Serum lipid biomarkers and hepatic lipase gene associations with age-related macular degeneration. Ophthalmology 117: 1989-1995. doi:10.1016/j.ophtha.2010.07.009. PubMed: 20888482.
[27]  Fauser S, Smailhodzic D, Caramoy A, van de Ven JP, Kirchhof B et al. (2011) Evaluation of serum lipid concentrations and genetic variants at high-density lipoprotein metabolism loci and TIMP3 in age-related macular degeneration. Invest Ophthalmol Vis Sci 52: 5525-5528. doi:10.1167/iovs.10-6827. PubMed: 21613373.
[28]  Yu Y, Reynolds R, Rosner B, Daly MJ, Seddon JM (2012) Prospective assessment of genetic effects on progression to different stages of age-related macular degeneration using multistate Markov models. Invest Ophthalmol Vis Sci 53: 1548-1556. doi:10.1167/iovs.11-8657. PubMed: 22247473.
[29]  Zhang X, Li M, Wen F, Zuo C, Chen H et al. (2013) Different impact of high-density lipoprotein-related genetic variants on polypoidal choroidal vasculopathy and neovascular age-related macular degeneration in a Chinese Han population. Exp Eye Res 108: 16-22. doi:10.1016/j.exer.2012.12.005. PubMed: 23274582.
[30]  Cipriani V, Leung HT, Plagnol V, Bunce C, Khan JC et al. (2012) Genome-wide association study of age-related macular degeneration identifies associated variants in the TNXB-FKBPL-NOTCH4 region of chromosome 6p21.3. Hum Mol Genet 21: 4138-4150. doi:10.1093/hmg/dds225. PubMed: 22694956.
[31]  Tian J, Yu W, Qin X, Fang K, Chen Q et al. (2012) Association of genetic polymorphisms and age-related macular degeneration in Chinese population. Invest Ophthalmol Vis Sci 53: 4262-4269. doi:10.1167/iovs.11-8542. PubMed: 22618592.
[32]  Maller J, George S, Purcell S, Fagerness J, Altshuler D et al. (2006) Common variation in three genes, including a noncoding variant in CFH, strongly influences risk of age-related macular degeneration. Nat Genet 38: 1055-1059. doi:10.1038/ng1873. PubMed: 16936732.
[33]  Kathiresan S, Willer CJ, Peloso GM, Demissie S, Musunuru K et al. (2009) Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet 41: 56-65. doi:10.1038/ng.291. PubMed: 19060906.
[34]  van Leeuwen R, Tomany SC, Wang JJ, Klein R, Mitchell P et al. (2004) Is medication use associated with the incidence of early age-related maculopathy? Pooled findings from 3 continents. Ophthalmology 111: 1169-1175. doi:10.1016/j.ophtha.2003.10.024. PubMed: 15177967.
[35]  Delcourt C, Michel F, Colvez A, Lacroux A, Delage M et al. (2001) Associations of cardiovascular disease and its risk factors with age-related macular degeneration: the POLA study. Ophthal Epidemiol 8: 237-249. doi:10.1076/opep.8.4.237.1613. PubMed: 11471092.
[36]  Wachter A, Sun Y, Dasch B, Krause K, Pauleikhoff D et al. (2004) [Munster age- and retina study (MARS). Association between risk factors for arteriosclerosis and age-related macular degeneration]. Ophthalmologe 101: 50-53. doi:10.1007/s00347-003-0868-1. PubMed: 14872268.
[37]  Nowak M, Swietochowska E, Marek B, Szapska B, Wielkoszynski T et al. (2005) Changes in lipid metabolism in women with age-related macular degeneration. Clin Exp Med 4: 183-187. doi:10.1007/s10238-004-0054-z. PubMed: 15750765.
[38]  Abalain JH, Carre JL, Leglise D, Robinet A, Legall F et al. (2002) Is age-related macular degeneration associated with serum lipoprotein and lipoparticle levels? Clin Chim Acta 326: 97-104. doi:10.1016/S0009-8981(02)00288-7. PubMed: 12417100.
[39]  Tan JS, Mitchell P, Smith W, Wang JJ (2007) Cardiovascular risk factors and the long-term incidence of age-related macular degeneration: the Blue Mountains Eye Study. Ophthalmology 114: 1143-1150. doi:10.1016/j.ophtha.2006.09.033. PubMed: 17275090.
[40]  Delcourt C, Korobelnik JF, Barberger-Gateau P, Delyfer MN, Rougier MB et al. (2010) Nutrition and age-related eye diseases: the Alienor (Antioxydants, Lipides Essentiels, Nutrition et maladies OculaiRes) Study. J Nutr Health Aging 14: 854-861. doi:10.1007/s12603-010-0131-9. PubMed: 21125205.
[41]  Group CS (2003) Vascular factors and risk of dementia: design of the Three-City Study and baseline characteristics of the study population. Neuroepidemiology 22: 316-325.
[42]  Bird AC, Bressler NM, Bressler SB, Chisholm IH, Coscas G et al. (1995) An international classification and grading system for age-related maculopathy and age-related macular degeneration. The International ARM Epidemiological Study Group. Surv Ophthalmol 39: 367-374. doi:10.1016/S0039-6257(05)80092-X. PubMed: 7604360.
[43]  Klein R, Klein BE, Knudtson MD, Wong TY, Cotch MF et al. (2006) Prevalence of age-related macular degeneration in 4 racial/ethnic groups in the multi-ethnic study of atherosclerosis. Ophthalmology 113: 373-380. doi:10.1016/j.ophtha.2005.12.013. PubMed: 16513455.
[44]  Lambert JC, Heath S, Even G, Campion D, Sleegers K et al. (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nat Genet 41: 1094-1099. doi:10.1038/ng.439. PubMed: 19734903.
[45]  Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR (2010) MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet Epidemiol 34: 816-834. doi:10.1002/gepi.20533. PubMed: 21058334.
[46]  Li Y, Willer C, Sanna S, Abecasis G (2009) Genotype imputation. Annu Rev Genomics Hum Genet 10: 387-406. doi:10.1146/annurev.genom.9.081307.164242. PubMed: 19715440.
[47]  1000 Genomes Project Consortium, Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, Gibbs RA, Hurles ME, McVean GA (2010) A map of human genome variation from population-scale sequencing. Nature 467: 1061-1073. doi:10.1038/nature09534. PubMed: 20981092.
[48]  Hartmann D, Thürmann PA, Spitzer V, Schalch W, Manner B et al. (2004) Plasma kinetics of zeaxanthin and 3'-dehydro-lutein after multiple oral doses of synthetic zeaxanthin. Am J Clin Nutr 79: 410-417. PubMed: 14985215.
[49]  Zeger SL, Liang KY, Albert PS (1988) Models for longitudinal data: a generalized estimating equation approach. Biometrics 44: 1049-1060. doi:10.2307/2531734. PubMed: 3233245.
[50]  Delcourt C, Delyfer MN, Rougier MB, Amouyel P, Colin J et al. (2011) Associations of complement factor H and smoking with early age-related macular degeneration: the ALIENOR study. Invest Ophthalmol Vis Sci 52: 5955-5962. doi:10.1167/iovs.10-6235. PubMed: 21642625.
[51]  Delcourt C, Delyfer MN, Rougier MB, Lambert JC, Amouyel P et al. (2012) ARMS2 A69S Polymorphism and the Risk for Age-Related Maculopathy: The ALIENOR Study. Arch Ophthalmol 130: 1077-1078. doi:10.1001/archophthalmol.2012.420. PubMed: 22893087.
[52]  Tyssandier V, Choubert G, Grolier P, Borel P (2002) Carotenoids, mostly the xanthophylls, exchange between plasma lipoproteins. Int J Vitam Nutr Res 72: 300-308. doi:10.1024/0300-9831.72.5.300. PubMed: 12463105.
[53]  Meyers KJ, Johnson EJ, Bernstein PS, Iyengar SK, Engelman CD et al. (2013) Genetic determinants of macular pigments in women of the carotenoids in age-related eye disease study. Invest Ophthalmol Vis Sci 54: 2333-2345. doi:10.1167/iovs.12-10867. PubMed: 23404124.
[54]  (2013) Lutein + Zeaxanthin and Omega-3 Fatty Acids for Age-Related Macular Degeneration. The Age-Related Eye Disease Study 2 (AREDS2) Randomized Clinical Trial. JAMA: 1-11.
[55]  Vingerling JR, Dielemans I, Hofman A, Grobbee DE, Hijmering M et al. (1995) The prevalence of age-related maculopathy in the Rotterdam Study. Ophthalmology 102: 205-210. doi:10.1016/S0161-6420(95)31034-2. PubMed: 7862408.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133