[1] | Mendelsohn M, Kough J, Vaituzis Z, Matthews K (2003) Are Bt crops safe? Nat Biotechnol 21: 1003-1009. doi:10.1038/nbt0903-1003. PubMed: 12949561.
|
[2] | Sanahuja G, Banakar R, Twyman RM, Capell T, Christou P (2011) Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol J 9: 283-300. doi:10.1111/j.1467-7652.2011.00595.x. PubMed: 21375687.
|
[3] | Pardo-López L, Soberón M, Bravo A (2013) Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbiol Rev 37: 3-22. doi:10.1111/j.1574-6976.2012.00341.x. PubMed: 22540421.
|
[4] | James C (2012) Global Status of Commercialized Biotech/GM Crops: 2012. ISAAA Brief No. 44. Ithaca, NY: International Service for the Acquisition of Agri-biotech Applications.
|
[5] | Tabashnik BE (1994) Evolution of resistance to Bacillus thuringiensis. Annu Rev Entomol 39: 47-79. doi:10.1146/annurev.en.39.010194.000403.
|
[6] | Tabashnik BE, Van Rensburg JBJ, Carrière Y (2009) Field-evolved insect resistance to Bt crops: definition, theory, and data. J Econ Entomol 102: 2011-2025. doi:10.1603/029.102.0601. PubMed: 20069826.
|
[7] | Carrière Y, Crowder DW, Tabashnik BE (2010) Evolutionary ecology of adaptation to Bt crops. Evol Appl 3: 561–573. doi:10.1111/j.1752-4571.2010.00129.x.
|
[8] | Tabashnik BE, Brévault T, Carrière Y (2013) Insect resistance to Bt crops: lessons from the first billion acres. Nat Biotechnol 31: 510-521. doi:10.1038/nbt.2597. PubMed: 23752438.
|
[9] | Tabashnik BE, Cushing NL, Finson N, Johnson MW (1990) Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). J Econ Entomol 83: 1671-1676.
|
[10] | Janmaat AF, Myers J (2003) Rapid evolution and the cost of resistance to Bacillus thuringiensis in greenhouse populations of cabbage loopers, Trichoplusia ni. Proc R Soc Lond B 270: 2263-2270. doi:10.1098/rspb.2003.2497. PubMed: 14613613.
|
[11] | Luttrell RG, Ali I, Allen KC, Young SY III et al. (2004) Resistance to Bt in Arkansas populations of cotton bollworm. pp. 1373-1383. In Richter Da, editor. Proceedings. ; (2004) Beltwide Cotton Conferences, 5-9 January 2004. San Antonio, TX: National Cotton Council of America, Memphis, TN.
|
[12] | Van Rensburg J (2007) First report of field resistance by stem borer, Busseola fusca (Fuller) to Bt-transgenic maize. S Afr J Plant Soil 24: 147-151. doi:10.1080/02571862.2007.10634798.
|
[13] | Tabashnik BE, Gassmann AJ, Crowder DW, Carriére Y (2008) Insect resistance to Bt crops: evidence versus theory. Nat Biotechnol 26: 199-202. doi:10.1038/nbt1382. PubMed: 18259177.
|
[14] | Storer NP, Babcock JM, Schlenz M, Meade T, Thompson GD et al. (2010) Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. J Econ Entomol 103: 1031-1038. doi:10.1603/EC10040. PubMed: 20857709.
|
[15] | Dhurua S, Gujar GT (2011) Field-evolved resistance to Bt toxin Cry1Ac in the pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), from India. Pest Manage Sci 67: 898-903. doi:10.1002/ps.2127. PubMed: 21438121.
|
[16] | Gassmann AJ, Petzold-Maxwell JL, Keweshan RS, Dunbar MW (2011) Field-evolved resistance to Bt maize by western corn rootworm. PLOS ONE 6: e22629. doi:10.1371/journal.pone.0022629. PubMed: 21829470.
|
[17] | Downes S, Parker T, Mahon R (2010) Incipient resistance of Helicoverpa punctigera to the Cry2Ab Bt toxin in Bollgard II ? cotton. PLOS ONE 5: e12567. doi:10.1371/journal.pone.0012567. PubMed: 20830203.
|
[18] | Zhang H, Yin W, Zhao J, Jin L, Yang Y et al. (2011) Early warning of cotton bollworm resistance associated with intensive planting of Bt cotton in China. PLOS ONE 6: e22874. doi:10.1371/journal.pone.0022874. PubMed: 21857961.
|
[19] | Alcantara E, Estrada A, Alpuerto V, Head G (2011) Monitoring Cry1Ab susceptibility in Asian corn borer (Lepidoptera: Crambidae) on Bt corn in the Philippines. Crop Protect 30: 554-559. doi:10.1016/j.cropro.2010.12.019.
|
[20] | Alvi AHK, Sayyed AH, Naeem M, Ali M (2012) Field evolved resistance in Helicoverpa armigera (Lepidoptera: Noctuidae) to Bacillus thuringiensis toxin Cry1Ac in Pakistan. PLOS ONE 7: e47309. doi:10.1371/journal.pone.0047309. PubMed: 23077589.
|
[21] | Huang F, Ghimire MN, Leonard BR, Daves C, Levy R et al. (2012) Extended monitoring of resistance to Bacillus thuringiensis Cry1Ab maize in Diatraea saccharalis (Lepidoptera: Crambidae). GM Crops Foods 3: 245-254. doi:10.4161/gmcr.20539. PubMed: 22688686.
|
[22] | Soberón M, Pardo-López Liliana , López I, Gómez I, Tabashnik BE (2007) Engineering modified Bt toxins to counter insect resistance. Science 318: 1640-1642. doi:10.1126/science.1146453. PubMed: 17975031.
|
[23] | Franklin MT, Nieman CL, Janmaat AF, Soberón M, Bravo A et al. (2009) Modified Bacillus thuringiensis toxins and a hybrid B. thuringiensis strain counter greenhouse-selected resistance in Trichoplusia ni. Appl Environ Microbiol 75: 5739-5741. doi:10.1128/AEM.00664-09. PubMed: 19592525.
|
[24] | Mu?óz-Garay C, Portugal L, Pardo-López L, Jiménez-Juárez N, Arenas I et al. (2009) Characterization of the mechanism of action of the genetically modified Cry1AbMod toxin that is active against Cry1Ab-resistant insects. Biochim Biophys Acta 1788: 2229–2237. doi:10.1016/j.bbamem.2009.06.014. PubMed: 19559004.
|
[25] | Porta H, Jiménez G, Cordoba E, León P, Soberón M, Bravo A (2011) Tobacco plants expressing the Cry1AbMod toxin suppress tolerance to Cry1Ab toxin of Manduca sexta cadherin-silenced larvae. Insect Biochem Mol Biol 41: 513-519. doi:10.1016/j.ibmb.2011.04.013. PubMed: 21621616.
|
[26] | Tabashnik BE, Huang F, Ghimire MN, Leonard BR, Siegfried BD et al. (2011) Efficacy of genetically modified Bt toxins against insects with different genetic mechanisms of resistance. Nat Biotechnol 29: 1128-1131. doi:10.1038/nbt.1988. PubMed: 21983521.
|
[27] | Moar WJ, Anilkumar KJ (2007) The power of the pyramid. Science 318: 1561-1562. doi:10.1126/science.1151313. PubMed: 17975032.
|
[28] | Ingram WR (1994) Pectinophora (Lepidoptera: Gelechiidae). In GA MatthewsJP Turnstall. Insect Pests of Cotton. Wallingford, UK: CAB International. pp. 107–148.
|
[29] | Bagla P (2010) Hardy cotton-munching pests are latest blow to GM Crops. Science 327: 1439. doi:10.1126/science.327.5972.1439. PubMed: 20299559.
|
[30] | Wan P, Huang Y, Wu H, Huang M, Cong S et al. (2012) Increased frequency of pink bollworm resistance to Bt toxin Cry1Ac in China. PLOS ONE 7: e29975. doi:10.1371/journal.pone.0029975. PubMed: 22238687.
|
[31] | Tabashnik BE, Sisterson MS, Ellsworth PC, Dennehy TJ, Antilla L et al. (2010) Suppressing resistance to Bt cotton with sterile insect releases. Nat Biotechnol 28: 1304-1307. doi:10.1038/nbt.1704. PubMed: 21057498.
|
[32] | Tabashnik BE, Morin S, Unnithan GC, Yelich AJ, Ellers-Kirk C et al. (2012) Sustained susceptibility of pink bollworm to Bt cotton in the United States. 2012. GM Crops Foods Biotechnol Agriculture Foods Chain 3:3: 194-200. July/August/September 2012.
|
[33] | Tabashnik BE, Dennehy TJ, Sims MA, Larkin K, Head GP et al. (2002) Control of resistant pink bollworm by transgenic cotton with Bacillus thuringiensis toxin Cry2Ab. Appl Environ Microbiol 68: 3790-3794. doi:10.1128/AEM.68.8.3790-3794.2002. PubMed: 12147473.
|
[34] | Tabashnik BE, Unnithan GC, Masson L, Crowder DW, Li X et al. (2009) Asymmetrical cross-resistance between Bacillus thuringiensis toxins Cry1Ac and Cry2Ab in pink bollworm. Proc Natl Acad Sci U_S_A 106: 11889–11894. doi:10.1073/pnas.0901351106. PubMed: 19581574.
|
[35] | Caccia S, Moar WJ, Chandrashekhar J, Oppert C, Anilkumar KJ et al. (2012) Association of Cry1Ac toxin resistance in Helicoverpa zea (Boddie) with increased alkaline phosphatase levels in the midgut lumen. Appl Environ Microbiol 78: 5690-5698. doi:10.1128/AEM.00523-12. PubMed: 22685140.
|
[36] | Wirth MC, Georghiou GP, Federici BA (1997) CytA enables CryIV endotoxins of Bacillus thuringiensis to overcome high levels of CryIV resistance in the mosquito Culex quinquiefasciatus. Proc Natl Acad Sci U_S_A 94: 10536–10540. doi:10.1073/pnas.94.20.10536. PubMed: 9380670.
|
[37] | Fernández-Luna MT, Tabashnik BE, Lanz-Mendoza H, Bravo A, Soberón M et al. (2010) Single concentration tests show synergism among Bacillus thuringiensis subsp. israelensis toxins against the malaria vector mosquito Anopheles albimanus. J Invert Pathol 104: 231-233. doi:10.1016/j.jip.2010.03.007. PubMed: 20361977.
|
[38] | Pérez C, Fernandez LE, Sun J, Folch JL, Gill SS et al. (2005) Bacillus thuringiensis subsp. israelensis Cyt1Aa synergizes Cry11Aa toxin by functioning as a membrane-bound receptor. Proc Natl Acad Sci U_S_A 102: 18: 303-318,16339907.
|
[39] | Liu Y-B, Tabashnik BE, Moar WJ, Smith RA (1998) Synergism between Bacillus thuringiensis spores and toxins against resistant and susceptible diamondback moths (Plutella xylostella). Appl Environ Microbiol 64: 1385-1389. PubMed: 16349543.
|
[40] | An J, Gao Y, Wu K, Gould F, Gao J et al. (2010) Vip3Aa tolerance response of Helicoverpa armigera populations from a Cry1Ac cotton planting region. J Econ Entomol 103: 2169–2173. doi:10.1603/EC10105. PubMed: 21309241.
|
[41] | Mahon RJ, Downes SJ, James B (2012) Vip3A resistance alleles exist at high levels in Australian targets before release of cotton expressing this toxin. PLOS ONE 7: e39192. doi:10.1371/journal.pone.0039192. PubMed: 22761737.
|
[42] | Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P et al. (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25: 1322-1326. doi:10.1038/nbt1359. PubMed: 17982443.
|
[43] | Huvenne H, Smagghe G (2010) Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: A review. J Insect Physiol 56: 227-235. doi:10.1016/j.jinsphys.2009.10.004. PubMed: 19837076.
|
[44] | Sainsbury F, Benchabane M, Goulet M-C, Michaud D (2012) Multimodal protein constructs for herbivore insect control. Toxins 4: 455-475. doi:10.3390/toxins4060455. PubMed: 22822457.
|
[45] | Chougule NP, Li H, Liu S, Linz LB, Narva KE et al. (2013) Retargeting of the Bacillus thuringiensis toxin Cyt2Aa against hemipteran insect pests. Proc Natl Acad Sci U_S_A 110: 8465-8470. doi:10.1073/pnas.1222144110. PubMed: 23650347.
|
[46] | Tabashnik BE, Patin AL, Dennehy TJ, Liu Y-B, Carrière Y et al. (2000) Frequency of resistance to Bacillus thuringiensis in field populations of pink bollworm. Proc Natl Acad Sci U_S_A 97: 12: 912-912,11087854.
|
[47] | Beard CE, Court L, Mourant RG, James B, Van Rie et al . (2008) Use of a Cry1Ac-resistant line of Helicoverpa armigera (Lepidoptera: Noctuidae) to detect novel insecticidal toxin genes in Bacillus thuringiensis. Curr Microbiol 57: 175-180. doi:10.1007/s00284-008-9098-8. PubMed: 18592310.
|
[48] | Tabashnik BE, Liu Y-B, Dennehy TJ, Sims MA, Sisterson MS et al. (2002) Inheritance of resistance to Bt toxin Cry1Ac in a field-derived strain of pink bollworm (Lepidoptera: Gelechiidae). J Econ Entomol 95: 1018 –1026. doi:10.1603/0022-0493-95.5.1018. PubMed: 12403429.
|
[49] | Liu Y-B, Tabashnik BE, Meyer SK, Carrière Y, Bartlett AC (2001) Genetics of pink bollworm resistance to Bacillus thuringiensis toxin Cry1Ac. J Econ Entomol 94: 248-252. doi:10.1603/0022-0493-94.1.248. PubMed: 11233121.
|
[50] | Software Leora (1987) POLO-PC: A User’s Guide to Probit or Logit Analysis (LeOra Software, Berkeley, CA).
|
[51] | Finney D (1971) Probit Analysis. Cambridge, UK: Cambridge University Press. pp. 50–80.
|