全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Re-Examination of Globally Flat Space-Time

DOI: 10.1371/journal.pone.0078114

Full-Text   Cite this paper   Add to My Lib

Abstract:

In the following, we offer a novel approach to modeling the observed effects currently attributed to the theoretical concepts of “dark energy,” “dark matter,” and “dark flow.” Instead of assuming the existence of these theoretical concepts, we take an alternative route and choose to redefine what we consider to be inertial motion as well as what constitutes an inertial frame of reference in flat space-time. We adopt none of the features of our current cosmological models except for the requirement that special and general relativity be local approximations within our revised definition of inertial systems. Implicit in our ideas is the assumption that at “large enough” scales one can treat objects within these inertial systems as point-particles having an insignificant effect on the curvature of space-time. We then proceed under the assumption that time and space are fundamentally intertwined such that time- and spatial-translational invariance are not inherent symmetries of flat space-time (i.e., observable clock rates depend upon both relative velocity and spatial position within these inertial systems) and take the geodesics of this theory in the radial Rindler chart as the proper characterization of inertial motion. With this commitment, we are able to model solely with inertial motion the observed effects expected to be the result of “dark energy,” “dark matter,” and “dark flow.” In addition, we examine the potential observable implications of our theory in a gravitational system located within a confined region of an inertial reference frame, subsequently interpreting the Pioneer anomaly as support for our redefinition of inertial motion. As well, we extend our analysis into quantum mechanics by quantizing for a real scalar field and find a possible explanation for the asymmetry between matter and antimatter within the framework of these redefined inertial systems.

References

[1]  Peebles PJE, Ratra B (2003) The cosmological constant and dark energy. Rev Mod Phys 75: 559–606.
[2]  Trimble V (1987) Existence and nature of dark matter in the universe. Annu Rev Astron Astrophys 25: 425–472.
[3]  Kashlinsky A, Atrio-Barandela F, Kocevski D, Ebeling H (2008) A measurement of large-scale peculiar velocities of clusters of galaxies: results and cosmological implications. Astrophys J 686: L49–L52.
[4]  Einstein A (1905) Zur Elektrodynamik bewegter K?rper. Ann Phys 17: 891–921.
[5]  Newton I, Motte A, Machin J (1729) The mathematical principles of natural philosophy, volume 1. London: B Motte, 418 pp.
[6]  Einstein A (1916) Die Grundlage der allgemeinen Relativit?tstheorie. Ann Phys 49: 769–822.
[7]  Trodden M, Carroll SM (2004) TASI lectures: introduction to cosmology. arXiv : astroph/0401547.
[8]  Lema?tre G (1931) The beginning of the world from the point of view of quantum theory. Nature 127: 706.
[9]  Gamow G (1946) Expanding universe and the origin of elements. Phys Rev 70: 572–573.
[10]  Alpher RA, Bethe H, Gamow G (1948) The origin of chemical elements. Phys Rev 73: 803–804.
[11]  Guth AH (1981) Inflationary universe: a possible solution to the horizon and flatness problems. Phys Rev D 23: 347–356.
[12]  Perlmutter S, Aldering G, Goldhaber G, Knop RA, Nugent P, et al. (1999) Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys J 517: 565–586.
[13]  Hubble E (1929) A relation between distance and radial velocity among extra-galactic nebulae. Proc Natl Acad Sci USA 15: 168–173.
[14]  Rubin VC, Ford WK, Thonnard N (1980) Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 (R = 4 kpc) to UGC 2885 (R = 122 kpc). Astrophys J 238: 471–487.
[15]  Watkins R, Feldman HA, Hudson MJ (2009) Consistently large cosmic ows on scales of 100 h?1 Mpc: a challenge for the standard ΛCDM cosmology. Mon Not R Astron Soc 392: 743–756.
[16]  Webb JK, King JA, Murphy MT, Flambaum VV, Carswell RF, et al. (2011) Indications of a spatial variation of the fine structure constant. Phys Rev Lett 107: 191101.
[17]  Clowes RG, Harris KA, Raghunathan S, Campusano LE, S?chting IK, et al. (2013) A structure in the early Universe at z ~1:3 that exceeds the homogeneity scale of the R-W concordance cosmology. Mon Not R Astron Soc 429: 2910–2916.
[18]  Witten E (1982) Instability of the Kaluza-Klein vacuum. Nucl Phys B 195: 481–492.
[19]  Culetu H (1994) A “conformal” perfect fluid in the classical vacuum. Gen Relat Gravit 26: 283–290.
[20]  Riess AG, Macri L, Casertano S, Lampeitl H, Ferguson HC, et al. (2011) A 3% solution: determination of the Hubble constant with the Hubble Space Telescope and Wide Field Camera 3. Astrophys J 730: 119–136.
[21]  Anderson JD, Laing PA, Lau EL, Liu AS, Nieto MM, et al. (2002) Study of the anomalous acceleration of Pioneer 10 and 11. Phys Rev D 65: 082004.
[22]  Penzias AA, Wilson RW (1965) A measurement of excess antenna temperature at 4080 Mc/s. Astrophys J 142: 419–421.
[23]  Anderson JD, Nieto MM (2009) Astrometric solar-system anomalies. Proc IAU 5: 189–197.
[24]  Wald RM (1984) General relativity. Chicago: University of Chicago Press, 491 pp.
[25]  Minkowski H (1915) Das Relativit?tsprinzip. Ann Phys 352: 927–938.
[26]  Rindler W (1966) Kruskal space and the uniformly accelerated frame. Am J Phys 34: 1174–1178.
[27]  Einstein A (1905) Ist die Tr?gheit eines K?rpers von seinem Energieinhalt abh?ngig? Ann Phys 18: 639–641.
[28]  Meier DL, Koide S, Uchida Y (2001) Magnetohydrodynamic production of relativistic jets. Science 291: 84–92.
[29]  Hawking SW, Ellis GFR (1973) The large scale structure of space-time. Cambridge: Cambridge University Press, 391 pp.
[30]  Massey R, Kitching T, Richard J (2010) The dark matter of gravitational lensing. Rep Prog Phys 73: 086901–086948.
[31]  Friedmann A (1922) über die Krümmung des Raumes. Z Phys 10: 377–386.
[32]  Friedmann A (1924) über die M?glichkeit einer Welt mit konstanter negativer Krümmung des Raumes. Z Phys 21: 326–332.
[33]  Lema?tre G (1927) Un univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques. Ann Soc Sci Brux 47: 49–59.
[34]  van den Bergh S (1999) The local group of galaxies. Astron Astrophys Rev 9: 273–318.
[35]  van den Bergh S (2000) Updated information on the Local Group. Publ Astron Soc Pac 112: 529–536.
[36]  Cox TJ, Loeb A (2008) The collision between the Milky Way and Andromeda. Mon Not R Astron Soc 386: 461–474.
[37]  Schwarzschild K (1916) über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Sitzungsberichte der K?niglich-Preussischen Akademie der Wissenschaften 1: 189–196.
[38]  Will CM (2006) The confrontation between general relativity and experiment. Living Rev Relativity 9: 3 Available: http://www.livingreviews.org/lrr-2006-3. Accessed 3 June 2013.
[39]  Turyshev SG, Anderson JD, Laing PA, Lau EL, Liu AS, et al. (1999) The apparent anomalous, weak, long-range acceleration of Pioneer 10 and 11. “Gravitational Waves and Experimental Gravity,”. Proc XVIII Rencontres de Moriond 481–486.
[40]  Anderson JD, Campbell JK, Nieto MM (2007) The energy transfer process in planetary flybys. New Astron 12: 383–397.
[41]  Turyshev SG, Toth VT, Kinsella G, Lee SC, Lok SM, et al. (2012) Support for the thermal origin of the Pioneer anomaly. Phys Rev Lett 108: 241101.
[42]  Fulling SA (1973) Nonuniqueness of canonical field quantization in Riemannian space-time. Phys Rev D 7: 2850–2862.
[43]  Wald RM (1994) Quantum field theory in curved spacetime and black hole thermodynamics. Chicago: University of Chicago Press, 205 pp.
[44]  Unruh WG, Wald RM (1984) What happens when an accelerating observer detects a Rindler particle. Phys Rev D 29: 1047–1056.
[45]  Arfken GB, Weber HJ, Harris F (2012) Mathematical methods for physicists: A comprehensive guide. Waltham: Academic Press, 7th edition, 1205 pp.
[46]  Abramowitz M, Stegun IA (1972) Handbook of mathematical functions with formulas, graphs, and mathematical tables. New York: Dover Publications, 1046 pp.
[47]  Watson GN (1922) A treatise on the theory of Bessel functions. Cambridge: Cambridge University Press, 804 pp.
[48]  Titchmarsh EC (1962) Eigenfunction expansions: associated with second-order differential equations. Part 1. Oxford: Oxford University Press, 2nd edition, 203 pp.
[49]  Passian A, Simpson H, Kouchekian S, Yakubovich SG (2009) On the orthogonality of the Mac-Donald's functions. J Math Anal Appl 360: 380–390.
[50]  Dunster TM (1990) Bessel functions of purely imaginary order, with an application to second order linear differential equations having a large parameter. SIAM J Math Anal 21: 995–1018.
[51]  Dirac PAM (1928) The quantum theory of the electron. Proc R Soc A 117: 610–624.
[52]  Goldstein H, Poole CP, Safko JL (2001) Classical mechanics. San Francisco: Addison-Wesley, 3rd edition, 680 pp.
[53]  de Jager CW, de Vries H, de Vries C (1974) Nuclear charge and moment distributions. At Data Nucl Data Tables 14: 479–508.
[54]  Mohr PJ, Taylor BN, Newell DB (2012) CODATA recommended values of the fundamental physical constants: 2010. Rev Mod Phys 84: 1527–1605.
[55]  Mayer MG, Jensen JHD (1955) Elementary theory of nuclear shell structure. New York: John Wiley and Sons, Inc., 269 pp.
[56]  Sakurai JJ, Napolitano JJ (2010) Modern quantum mechanics. San Francisco: Addison-Wesley, 2nd edition, 550 pp.
[57]  Brown BA, Wildenthal BH (1988) Status of the nuclear shell model. Annu Rev Nucl Part Sci 38: 29–66.
[58]  Unruh WG (1976) Notes on black-hole evaporation. Phys Rev D 14: 870–892.
[59]  Hinton K, Davies PCW, Pfautsch J (1983) Accelerated observers do not detect isotropic thermal radiation. Phys Lett B 120: 88–90.
[60]  Fixsen DJ (2009) The temperature of the cosmic microwave background. Astrophys J 707: 916–921.
[61]  Ade PAR, Aghanim N, Armitage-Caplan C, Arnaud M, Ashdown M, et al. (2013) Planck 2013 results. XXIII. Isotropy and statistics of the CMB. Astron Astrophys In press.
[62]  Kopeikin SM (2012) Celestial ephemerides in an expanding universe. Phys Rev D 86: 064004.
[63]  Iorio L (2013) Local cosmological effects of the order of H in the orbital motion of a binary system. Mon Not R Astron Soc 429: 915–922.
[64]  Iorio L (2008) Solar system motions and the cosmological constant: a new approach. Adv Astron 2008: 268647.
[65]  Grumiller D (2010) Model for gravity at large distances. Phys Rev Lett 105: 211303.
[66]  Iorio L (2011) Solar system constraints on a Rindler-type extra-acceleration from modified gravity at large distances. J Cosmol Astropart Phys 5: 19.
[67]  Iorio L (2011) Impact of a Pioneer/Rindler-type acceleration on the Oort cloud. Mon Not R Astron Soc 419: 2226–2232.
[68]  Carloni S, Grumiller D, Preis F (2011) Solar system constraints on Rindler acceleration. Phys Rev D 83: 124024.
[69]  Grumiller D, Preis F (2011) Rindler force at large distances. Int J Mod Phys D 20: 2761–2766.
[70]  Culetu H (2012) Time-dependent embedding of a spherically symmetric Rindler-like spacetime. Classical Quant Grav 29: 235021.
[71]  Iorio L, Lichtenegger HIM, Ruggiero ML, Corda C (2011) Phenomenology of the Lense-Thirring effect in the solar system. Astrophys Space Sci 331: 351–395.
[72]  Williams JG, Boggs DH, Yoder CF, Ratcliff JT, Dickey JO (2001) Lunar rotational dissipation in solid body and molten core. J Geophys Res 106: 27933–27968.
[73]  Williams JG, Dickey JO (2003) Lunar geophysics, geodesy, and dynamics. Proc 13th IntWorkshop Laser Ranging 75–86.
[74]  Williams JG, Boggs DH (2009) Lunar core and mantle. What does LLR see? Proc 16th Int Workshop Laser Ranging 1: 101–120.
[75]  Iorio L (2011) On the anomalous secular increase of the eccentricity of the orbit of the Moon. Mon Not R Astron Soc 415: 1266–1275.
[76]  Iorio L (2011) An empirical explanation of the anomalous increases in the astronomical unit and the lunar eccentricity. Astron J 142: 68–70.
[77]  Anderson JD, Campbell JK, Ekelund JE, Ellis J, Jordan JF (2008) Anomalous orbital-energy changes observed during spacecraft flybys of Earth. Phys Rev Lett 100: 091102.
[78]  Iorio L (2009) The effect of general relativity on hyperbolic orbits and its application to the flyby anomaly. Schol Res Exch 2009: 807695.
[79]  Fienga A, Laskar J, Kuchynka P, Leponcin-Lafitte C, Manche H, et al. (2010) Gravity tests with INPOP planetary ephemerides. Proc IAU S261 159–169.
[80]  Pitjeva EV (2009) Ephemerides EPM2008: the updated model, constants, data. Proc “Journees 2008 Systemes de reference spatio-temporels” 57–60.
[81]  Iorio L (2009) The recently determined anomalous perihelion precession of Saturn. Astron J 137: 3615–3618.
[82]  Iorio L (2010) The perihelion precession of Saturn, planet X/Nemesis and MOND. Open Astron J 3: 1–6.
[83]  Fienga A, Laskar J, Kuchynka P, Manche H, Desvignes G, et al. (2011) The INPOP10a planetary ephemeris and its applications in fundamental physics. Celest Mech Dyn Astron 111: 363–385.
[84]  Pitjeva EV (2010) EPM ephemerides and relativity. Proc IAU S261 170–178.
[85]  Pitjev NP, Pitjeva EV (2013) Constraints on dark matter in the solar system. Astron Lett 39: 141–149.
[86]  Pitjeva EV, Pitjev NP (2012) Changes in the Sun's mass and gravitational constant estimated using modern observations of planets and spacecraft. Sol Syst Res 46: 78–87.
[87]  Iorio L (2010) Effect of sun and planet-bound dark matter on planet and satellite dynamics in the solar system. J Cosm Astropart Phys 05: 018.
[88]  Rievers B, Bremer S, List M, L?mmerzahl C, Dittus H (2010) Thermal dissipation force modeling with preliminary results for Pioneer 10/11. Acta Astronaut 66: 467–476.
[89]  Rievers B, L?mmerzahl C, List M, Bremer S, Dittus H (2009) New powerful thermal modeling for high-precision gravity missions with application to Pioneer 10/11. New J Phys 11: 113032.
[90]  Rievers B, L?mmerzahl C, Dittus H (2010) Modeling of thermal perturbations using raytracing method with preliminary results for a test case model of the Pioneer 10/11 radioisotopic thermal generators. Space Sci Rev 151: 123–133.
[91]  Bertolami O, Francisco F, Gil PJS, Páramos J (2010) Estimating radiative momentum transfer through a thermal analysis of the Pioneer anomaly. Space Sci Rev 151: 75–91.
[92]  Bertolami O, Francisco F, Gil PJS, Páramos J (2008) Thermal analysis of the Pioneer anomaly: a method to estimate radiative momentum transfer. Phys Rev D 78: 103001.
[93]  Francisco F, Bertolami O, Gil PJS, Páramos J (2012) Modelling the reective thermal contribution to the acceleration of the Pioneer spacecraft. Phys Lett B 711: 337–346.
[94]  Turyshev SG, Toth VT, Ellis J, Markwardt CB (2011) Support for temporally varying behavior of the Pioneer anomaly from the extended Pioneer 10 and 11 Doppler data sets. Phys Rev Lett 107: 081103.
[95]  Iorio L, Giudice G (2006) What do the orbital motions of the outer planets of the solar system tell us about the Pioneer anomaly? New Astron 11: 600–607.
[96]  Standish EM (2010) Testing alternate gravitational theories. Proc IAU 261: 179–182.
[97]  Standish EM (2008) Planetary and lunar ephemerides: testing alternative gravitational theories. AIP Conf Proc 977: 254–263.
[98]  Iorio L (2012) Orbital effects of a time-dependent Pioneer-like anomalous acceleration. Mod Phys Lett A 27: 1250071.
[99]  Iorio L (2008) The Lense-Thirring effect and the Pioneer anomaly: solar system tests. The Eleventh Marcel Grossmann Meeting 2558–2560.
[100]  Iorio L (2010) Does the Neptunian system of satellites challenge a gravitational origin for the Pioneer anomaly? Mon Not R Astron Soc 405: 2615–2622.
[101]  Iorio L (2009) Can the Pioneer anomaly be induced by velocity-dependent forces? Int J Mod Phys D 18: 947.
[102]  Iorio L (2007) Can the Pioneer anomaly be of gravitational origin? A phenomenological answer. Found Phys 37: 897–918.
[103]  Iorio L (2007) Jupiter, Saturn and the Pioneer anomaly: a planetary-based independent test. J Grav Phys 1: 5–8.
[104]  Page GL, Wallin JF, Dixon DS (2009) How well do we know the orbits of the outer planets? Astrophys J 697: 1226–1241.
[105]  Varieschi GU (2012) Conformal cosmology and the Pioneer anomaly. Phys Res Int 2012: 469095.
[106]  Page GL, Dixon DS, Wallin JF (2006) Can minor planets be used to assess gravity in the outer solar system? Astrophys J 642: 606–614.
[107]  Page GL (2010) Exploring the weak limit of gravity at solar system scales. Publ Astron Soc Pac 122: 259–260.
[108]  Wallin JF, Dixon DS, Page GL (2007) Testing gravity in the outer solar system: results from trans-Neptunian objects. Astrophys J 666: 1296–1302.
[109]  Tangen K (2007) Could the Pioneer anomaly have a gravitational origin? Phys Rev D 76: 042005.
[110]  Dittus H, Turyshev SG, L?mmerzahl C, Theil S, Foerstner R, et al. (2005) A mission to explore the Pioneer anomaly. ESA Spec Publ 588: 3–10.
[111]  Eisenhauer F, Genzel R, Ott T, Tecza M, Abuter R, et al. (2003) A geometric determination of the distance to the galactic center. Astrophys J 597: L121–L124.
[112]  Ghez AM, Duchene G, Matthews K, Hornstein SD, Tanner A, et al. (2003) The first measurement of spectral lines in a short-period star bound to the galaxy's central black hole: a paradox of youth. Astrophys J 586: L127–L131.
[113]  Basu D (1998) Are some high redshift galaxies actually blueshifting? Astrophys Space Sci 259: 415–420.
[114]  Basu D, Haque-Copilah S (2001) Blueshifts in emission line spectra of quasi stellar objects. Phys Scripta 63: 425–432.
[115]  Basu D (2011) CXO CDFS J033260.0-274748: a quasar with unusual spectra possibly blueshifted? Can J Phys 89: 985–990.
[116]  Yaqoob T, George M, Nandra K, Turner TJ, Zobair S, et al. (1999) A highly Doppler blueshifted Fe-K emission line in the high-redshift QSO PKS 2149–306. Astrophys J 525: L9–L12.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133