全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Near-Infrared 808 nm Light Boosts Complex IV-Dependent Respiration and Rescues a Parkinson-Related pink1 Model

DOI: 10.1371/journal.pone.0078562

Full-Text   Cite this paper   Add to My Lib

Abstract:

Mitochondrial electron transport chain (ETC) defects are observed in Parkinson’s disease (PD) patients and in PD fly- and mouse-models; however it remains to be tested if acute improvement of ETC function alleviates PD-relevant defects. We tested the hypothesis that 808 nm infrared light that effectively penetrates tissues rescues pink1 mutants. We show that irradiating isolated fly or mouse mitochondria with 808 nm light that is absorbed by ETC-Complex IV acutely improves Complex IV-dependent oxygen consumption and ATP production, a feature that is wavelength-specific. Irradiating Drosophila pink1 mutants using a single dose of 808 nm light results in a rescue of major systemic and mitochondrial defects. Time-course experiments indicate mitochondrial membrane potential defects are rescued prior to mitochondrial morphological defects, also in dopaminergic neurons, suggesting mitochondrial functional defects precede mitochondrial swelling. Thus, our data indicate that improvement of mitochondrial function using infrared light stimulation is a viable strategy to alleviate pink1-related defects.

References

[1]  Elsworth JD, Roth RH (1997) Dopamine synthesis, uptake, metabolism, and receptors: relevance to gene therapy of Parkinson’s disease. Exp Neurol 144: 4–9.
[2]  Jankovic J, Poewe W (2012) Therapies in Parkinson’s disease. Curr Opin Neurol 25: 433–447.
[3]  Kleiner-Fisman G, Herzog J, Fisman DN, Tamma F, Lyons KE, et al. (2006) Subthalamic nucleus deep brain stimulation: summary and meta-analysis of outcomes. Mov Disord 21 Suppl 1S290–304.
[4]  Volkmann J (2004) Deep brain stimulation for the treatment of Parkinson’s disease. J Clin Neurophysiol 21: 6–17.
[5]  Gautier CA, Kitada T, Shen J (2008) Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress. Proceedings of the National Academy of Sciences 105: 11364–11369.
[6]  Hao LY, Giasson BI, Bonini NM (2010) DJ-1 is critical for mitochondrial function and rescues PINK1 loss of function. Proceedings of the National Academy of Sciences 107: 9747–9752.
[7]  Morais VA, Verstreken P, Roethig A, Smet J, Snellinx A, et al. (2009) Parkinson’s disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function. EMBO Molecular Medicine 1: 99–111.
[8]  Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB, et al. (1989) Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1: 1269.
[9]  Tetrud JW, Langston JW (1989) MPTP-induced parkinsonism as a model for Parkinson’s disease. Acta Neurol Scand Suppl 126: 35–40.
[10]  Varghese M, Pandey M, Samanta A, Gangopadhyay PK, Mohanakumar KP (2009) Reduced NADH coenzyme Q dehydrogenase activity in platelets of Parkinson’s disease, but not Parkinson plus patients, from an Indian population. J Neurol Sci 279: 39–42.
[11]  Vilain S, Esposito G, Haddad D, Schaap O, Dobreva MP, et al. (2012) The yeast complex I equivalent NADH dehydrogenase rescues pink1 mutants. PLoS Genetics 8: e1002456.
[12]  Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, et al. (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441: 1162–1166.
[13]  Park J, Lee SB, Lee S, Kim Y, Song S, et al. (2006) Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441: 1157–1161.
[14]  Kim Y, Park J, Kim S, Song S, Kwon SK, et al. (2008) PINK1 controls mitochondrial localization of Parkin through direct phosphorylation. Biochem Biophys Res Commun 377: 975–980.
[15]  Liu S, Lu B (2010) Reduction of protein translation and activation of autophagy protect against PINK1 pathogenesis in Drosophila melanogaster. PLoS Genet 6: e1001237.
[16]  Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, et al. (2010) PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 189: 211–221.
[17]  Narendra D, Tanaka A, Suen D-F, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. The Journal of Cell Biology 183: 795–803.
[18]  Ziviani E, Tao RN, Whitworth AJ (2010) Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proceedings of the National Academy of Sciences 107: 5018–5023.
[19]  Vos M, Esposito G, Edirisinghe JN, Vilain S, Haddad DM, et al. (2012) Vitamin K2 is a mitochondrial electron carrier that rescues pink1 deficiency. Science 336: 1306–1310.
[20]  Esposito G, Vos M, Vilain S, Swerts J, De Sousa Valadas J, et al. (2013) Aconitase Causes Iron Toxicity in Drosophila pink1 Mutants. Plos genetics 9: e1003478.
[21]  Yu W, Sun Y, Guo S, Lu B (2011) The PINK1/Parkin pathway regulates mitochondrial dynamics and function in mammalian hippocampal and dopaminergic neurons. Hum Mol Genet 20: 3227–3240.
[22]  Liu W, Acín-Peréz R, Geghman KD, Manfredi G, Lu B, et al. (2011) Pink1 regulates the oxidative phosphorylation machinery via mitochondrial fission. Proceedings of the National Academy of Sciences of the United States of America 108: 12920–12924.
[23]  Conlan MJ, Rapley JW, Cobb CM (1996) Biostimulation of wound healing by low-energy laser irradiation. A review. J Clin Periodontol 23: 492–496.
[24]  Sharma SK, Kharkwal GB, Sajo M, Huang YY, De Taboada L, et al. (2011) Dose response effects of 810 nm laser light on mouse primary cortical neurons. Lasers Surg Med 43: 851–859.
[25]  Zhang H, Ma W, Li Y (2009) Generation of effective vaccines against liver cancer by using photodynamic therapy. Lasers Med Sci 24: 549–552.
[26]  Liang HL, Whelan HT, Eells JT, Wong-Riley MTT (2008) Near-infrared light via light-emitting diode treatment is therapeutic against rotenone- and 1-methyl-4-phenylpyridinium ion-induced neurotoxicity. Neuroscience 153: 963–974.
[27]  Moro C, Torres N, El Massri N, Ratel D, Johnstone DM, et al. (2013) Photobiomodulation preserves behaviour and midbrain dopaminergic cells from MPTP toxicity: evidence from two mouse strains. BMC neuroscience 14: 40.
[28]  Karu T (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B 49: 1–17.
[29]  Walker DW, H??jek P, Muffat J, Knoepfle D, Cornelison S, et al. (2006) Hypersensitivity to oxygen and shortened lifespan in a Drosophila mitochondrial complex II mutant. Proceedings of the National Academy of Sciences 103: 16382–16387.
[30]  Yaroslavsky AN, Schulze PC, Yaroslavsky I V, Schober R, Ulrich F, et al. (2002) Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range. Phys Med Biol 47: 2059–2073.
[31]  Poole AC, Thomas RE, Andrews LA, McBride HM, Whitworth AJ, et al. (2008) The PINK1/Parkin pathway regulates mitochondrial morphology. Proceedings of the National Academy of Sciences 105: 1638–1643.
[32]  Karu TI, Kolyakov SF (2005) Exact action spectra for cellular responses relevant to phototherapy. Photomed Laser Surg 23: 355–361.
[33]  Reers M, Smith TW, Chen LB (1991) J-aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane potential. Biochemistry 30: 4480–4486.
[34]  Kim RH, Peters M, Jang Y, Shi W, Pintilie M, et al. (2005) DJ-1, a novel regulator of the tumor suppressor PTEN. Cancer cell 7: 263–273.
[35]  Deng H, Dodson MW, Huang H, Guo M (2008) The Parkinson’s disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proceedings of the National Academy of Sciences 105: 14503–14508.
[36]  Lutz AK, Exner N, Fett ME, Schlehe JS, Kloos K, et al. (2009) Loss of parkin or PINK1 function increases Drp1-dependent mitochondrial fragmentation. J Biol Chem 284: 22938–22951.
[37]  DiMauro S, Schon E a (2003) Mitochondrial respiratory-chain diseases. The New England journal of medicine 348: 2656–2668.
[38]  Pecina P, Houstková H, Hansíková H, Zeman J, Houstek J (2004) Genetic defects of cytochrome c oxidase assembly. Physiological research/Academia Scientiarum Bohemoslovaca 53 Suppl 1S213–23.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133