[1] | Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, et al. (2013) Executive summary: heart disease and stroke statistics–2013 update: a report from the American Heart Association. Circulation 127: 143–152.
|
[2] | Jones TA, Allred RP, Adkins DL, Hsu JE, O’Bryant A, et al. (2009) Remodeling the brain with behavioral experience after stroke. Stroke 40: S136–138.
|
[3] | Ginsberg MD (2009) Current status of neuroprotection for cerebral ischemia: synoptic overview. Stroke 40: S111–114.
|
[4] | Lin RC, Scheller RH (2000) Mechanisms of synaptic vesicle exocytosis. Ann Rev Cell Dev Biol 16: 19–49.
|
[5] | Berridge MJ (1998) Neuronal calcium signaling. Neuron 21: 13–26.
|
[6] | Bano D, Young KW, Guerin CJ, Lefeuvre R, Rothwell NJ, et al. (2005) Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity. Cell 120: 275–285.
|
[7] | Choi DW (1992) Excitotoxic cell death. J Neurobiol 23: 1261–1276.
|
[8] | Lee JM, Zipfel GJ, Choi DW (1999) The changing landscape of ischaemic brain injury mechanisms. Nature 399: A7–14.
|
[9] | Kristian T, Siesjo BK (1998) Calcium in ischemic cell death. Stroke 29: 705–718.
|
[10] | Baimbridge KG, Celio MR, Rogers JH (1992) Calcium-binding proteins in the nervous system. Trends Neurosci 15: 303–308.
|
[11] | Chard PS, Jordan J, Marcuccilli CJ, Miller RJ, Leiden JM, et al. (1995) Regulation of excitatory transmission at hippocampal synapses by calbindin D28k. Proc Natl Acad Sci U S A 92: 5144–5148.
|
[12] | Lledo PM, Somasundaram B, Morton AJ, Emson PC, Mason WT (1992) Stable transfection of calbindin-D28k into the GH3 cell line alters calcium currents and intracellular calcium homeostasis. Neuron 9: 943–954.
|
[13] | Celio MR, Pauls TL, Schwaller B (1996) Introduction to EF-hand calcium-binding proteins. In: Celio MR, editor. Guidebook to the Calcium-binding Proteins. New York: Oxford University Press. 15–20.
|
[14] | Freund TF, Buzsaki G, Leon A, Baimbridge KG, Somogyi P (1990) Relationship of neuronal vulnerability and calcium binding protein immunoreactivity in ischemia. Exp Brain Res 83: 55–66.
|
[15] | Gary DS, Sooy K, Chan SL, Christakos S, Mattson MP (2000) Concentration- and cell type-specific effects of calbindin D28k on vulnerability of hippocampal neurons to seizure-induced injury. Brain Res Mol Brain Res 75: 89–95.
|
[16] | Iacopino AM, Christakos S, German D, Sonsalla PK, Altar CA (1992) Calbindin-D28K-containing neurons in animal models of neurodegeneration: possible protection from excitotoxicity. Brain Res Mol Brain Res 13: 251–261.
|
[17] | Rami A, Rabie A, Thomasset M, Krieglstein J (1992) Calbindin-D28K and ischemic damage of pyramidal cells in rat hippocampus. J Neurosci Res 31: 89–95.
|
[18] | Choi JH, Lee CH, Yoo KY, Hwang IK, Lee IS, et al. (2010) Age-related changes in calbindin-D28k, parvalbumin, and calretinin immunoreactivity in the dog main olfactory bulb. Cell Mol Neurobiol 30: 1–12.
|
[19] | De Jong GI, Naber PA, Van der Zee EA, Thompson LT, Disterhoft JF, et al. (1996) Age-related loss of calcium binding proteins in rabbit hippocampus. Neurobiol Aging 17: 459–465.
|
[20] | Moyer JR Jr, Furtak SC, McGann JP, Brown TH (2011) Aging-related changes in calcium-binding proteins in rat perirhinal cortex. Neurobiol Aging 32: 1693–1706.
|
[21] | Bu J, Sathyendra V, Nagykery N, Geula C (2003) Age-related changes in calbindin-D28k, calretinin, and parvalbumin-immunoreactive neurons in the human cerebral cortex. Exp Neurol 182: 220–231.
|
[22] | Krzywkowski P, Potier B, Billard JM, Dutar P, Lamour Y (1996) Synaptic mechanisms and calcium binding proteins in the aged rat brain. Life Sci 59: 421–428.
|
[23] | Villa A, Podini P, Panzeri MC, Racchetti G, Meldolesi J (1994) Cytosolic Ca2+ binding proteins during rat brain ageing: loss of calbindin and calretinin in the hippocampus, with no change in the cerebellum. Eur J Neurosci 6: 1491–1499.
|
[24] | Mattson MP, Magnus T (2006) Ageing and neuronal vulnerability. Nat Rev Neurosci 7: 278–294.
|
[25] | Iacopino AM, Christakos S (1990) Specific reduction of calcium-binding protein (28-kilodalton calbindin-D) gene expression in aging and neurodegenerative diseases. Proc Natl Acad Sci U S A 87: 4078–4082.
|
[26] | Thibault O, Gant JC, Landfield PW (2007) Expansion of the calcium hypothesis of brain aging and Alzheimer’s disease: minding the store. Aging Cell 6: 307–317.
|
[27] | Hof PR, Morrison JH (1991) Neocortical neuronal subpopulations labeled by a monoclonal antibody to calbindin exhibit differential vulnerability in Alzheimer’s disease. Exp Neurol 111: 293–301.
|
[28] | Mikkonen M, Alafuzoff I, Tapiola T, Soininen H, Niettinen R (1999) Subfield- and layer-specific changes in parvalbumin, calretinin and calbindin-D28K immunoreactivity in the entorhinal cortex in Alzheimer’s disease. Neuroscience 92: 515–532.
|
[29] | Sutherland MK, Wong L, Somerville MJ, Yoong LKK, Bergeron C, et al. (1993) Reduction of calbindin-28k mRNA levels in Alzheimer as compared to Huntington hippocampus. Brain Res Mol Brain Res 18: 32–42.
|
[30] | Yenari MA, Minami M, Sun GH, Meier TJ, Kunis DM, et al. (2001) Calbindin d28k overexpression protects striatal neurons from transient focal cerebral ischemia. Stroke 32: 1028–1035.
|
[31] | Fan Y, Shi L, Gu Y, Zhao Y, Xie J, et al. (2007) Pretreatment with PTD-calbindin D 28k alleviates rat brain injury induced by ischemia and reperfusion. J Cereb Blood Flow Metab 27: 719–728.
|
[32] | Urra X, Chamorro A (2013) Emerging issues in acute ischemic stroke. J Neurol 260: 1687–1692.
|
[33] | Khachaturian ZS (1984) Towards theories of brain aging. In: Kay DWK, Burrows GD, editors. Handbook of Studies on Psychiatry and Old Age. New York: Elsevier. 7–30.
|
[34] | Khachaturian ZS (1989) The role of calcium regulation in brain aging: reexamination of a hypothesis. Aging 1: 17–34.
|
[35] | Landfield PW (1987) ‘Increased calcium-current’ hypothesis of brain aging. Neurobiol Aging 8: 346–347.
|
[36] | Wu WW, Oh MM, Disterhoft JF (2002) Age-related biophysical alterations of hippocampal pyramidal neurons: implications for learning and memory. Ageing Res Rev 1: 181–207.
|
[37] | Disterhoft JF, Oh MM (2007) Alterations in intrinsic neuronal excitability during normal aging. Aging Cell 6: 327–336.
|
[38] | Brait VH, Arumugam TV, Drummond GR, Sobey CG (2012) Importance of T lymphocytes in brain injury, immunodeficiency, and recovery after cerebral ischemia. J Cereb Blood Flow Metab 32: 598–611.
|
[39] | Mahesh VB, Dhandapani KM, Brann DW (2006) Role of astrocytes in reproduction and neuroprotection. Mol Cell Endocrinol 246: 1–9.
|
[40] | Sama DM, Norris CM (2013) Calcium dysregulation and neuroinflammation: Discrete and integrated mechanisms for age-related synaptic dysfunction. Ageing Res Rev.
|
[41] | Simon RP, Swan JH, Griffiths T, Meldrum BS (1984) Blockade of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain. Science 226: 850–852.
|
[42] | Choi DW (1985) Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neurosci Lett 58: 293–297.
|
[43] | Lysko PG, Cox JA, Vigano MA, Henneberry RC (1989) Excitatory amino acid neurotoxicity at the N-methyl-D-aspartate receptor in cultured neurons: pharmacological characterization. Brain Res 499: 258–266.
|
[44] | Park CK, Nehls DG, Graham DI, Teasdale GM, McCulloch J (1988) The glutamate antagonist MK-801 reduces focal ischemic brain damage in the rat. Ann Neurol 24: 543–551.
|
[45] | Nikonenko I, Bancila M, Bloc A, Muller D, Bijlenga P (2005) Inhibition of T-type calcium channels protects neurons from delayed ischemia-induced damage. Mol Pharmacol 68: 84–89.
|
[46] | Hadley MN, Zabramski JM, Spetzler RF, Rigamonti D, Fifield MS, et al. (1989) The efficacy of intravenous nimodipine in the treatment of focal cerebral ischemia in a primate model. Neurosurgery 25: 63–70.
|
[47] | Uematsu D, Araki N, Greenberg JH, Sladky J, Reivich M (1991) Combined therapy with MK-801 and nimodipine for protection of ischemic brain damage. Neurology 41: 88–94.
|
[48] | Lipton SA (2004) Failures and successes of NMDA receptor antagonists: molecular basis for the use of open-channel blockers like memantine in the treatment of acute and chronic neurologic insults. NeuroRx 1: 101–110.
|
[49] | Toma S, Chong KT, Nakagawa A, Teranishi K, Inouye S, et al. (2005) The crystal structures of semi-synthetic aequorins. Protein Sci 14: 409–416.
|
[50] | Cobbold PH, Lee JAC (1991) Aequorin measurements of cytoplasmic free calcium. In: McCormack JG, Cobbold PH, editors. Cellular calcium: a practical approach. New York: Oxford University Press. 55–81.
|
[51] | Shimomura O, Inouye S (1996) Titration of recombinant aequorin with calcium chloride. Biochem Biophys Res Commun 221: 77–81.
|
[52] | Raley-Susman KM, Lipton P (1990) In vitro ischemia and protein synthesis in the rat hippocampal slice: the role of calcium and NMDA receptor activation. Brain Res 515: 27–38.
|
[53] | Newman GC, Hospod FE, Wu P (1989) Glucose utilization of ischemic hippocampal slices. J Neurosci Methods 28: 23–34.
|
[54] | Taylor CP, Burke SP, Weber ML (1995) Hippocampal slices: glutamate overflow and cellular damage from ischemia are reduced by sodium-channel blockade. J Neurosci Methods 59: 121–128.
|
[55] | Whittingham TS, Lust WD, Passonneau JV (1984) An in vitro model of ischemia: metabolic and electrical alterations in the hippocampal slice. J Neurosci 4: 793–802.
|
[56] | Pohorecki R, Becker GL, Reilly PJ, Landers DF (1990) Ischemic brain injury in vitro: protective effects of NMDA receptor antagonists and calmidazolium. Brain Res 528: 133–137.
|
[57] | Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79: 1431–1568.
|
[58] | Kirino T, Sano K (1984) Selective vulnerability in the gerbil hippocampus following transient ischemia. Acta Neuropathol 62: 201–208.
|
[59] | Moran DL, Marone PA, Bauter MR, Soni MG (2013) Safety assessment of Apoaequorin, a protein preparation: Subchronic toxicity study in rats. Food Chem Toxicol 57C: 1–10.
|
[60] | Moyer JR, Jr., Brown TM (2007) Visually-guided patch-clamp recordings in brain slices. In: Walz W, editor. Advanced Techniques for Patch-Clamp Analysis. 3rd ed. Totowa, NJ: Humana Press. 169–227.
|
[61] | Moyer JR Jr, Brown TH (1998) Methods for whole-cell recording from visually preselected neurons of perirhinal cortex in brain slices from young and aging rats. J Neurosci Methods 86: 35–54.
|
[62] | DeRenzis FA, Schechtman A (1973) Staining by neutral red and trypan blue in sequence for assaying vital and nonvital cultured cells. Stain Technol 48: 135–136.
|
[63] | Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29: e45.
|
[64] | Simon RP, Niiro M, Gwinn R (1993) Prior ischemic stress protects against experimental stroke. Neurosci Lett 163: 135–137.
|
[65] | Xu GP, Dave KR, Vivero R, Schmidt-Kastner R, Sick TJ, et al. (2002) Improvement in neuronal survival after ischemic preconditioning in hippocampal slice cultures. Brain Res 952: 153–158.
|
[66] | Oh MM, Oliveira FA, Disterhoft JF (2010) Learning and aging related changes in intrinsic neuronal excitability. Front Aging Neurosci 2: 2.
|
[67] | Pera J, Zawadzka M, Kaminska B, Szczudlik A (2004) Influence of chemical and ischemic preconditioning on cytokine expression after focal brain ischemia. J Neurosci Res 78: 132–140.
|
[68] | Mattson MP, Rychlik B, Chu C, Christakos S (1991) Evidence for calcium-reducing and excito-protective roles for the calcium-binding protein calbindin-D28k in cultured hippocampal neurons. Neuron 6: 41–51.
|
[69] | Lowenstein DH, Gwinn RP, Seren MS, Simon RP, McIntosh TK (1994) Increased expression of mRNA encoding calbindin-D28K, the glucose-regulated proteins, or the 72 kDa heat-shock protein in three models of acute CNS injury. Brain Res Mol Brain Res 22: 299–308.
|
[70] | Mattson MP, Cheng B, Baldwin SA, Smith-Swintosky VL, Keller J, et al. (1995) Brain injury and tumor necrosis factors induce calbindin D-28k in astrocytes: evidence for a cytoprotective response. J Neurosci Res 42: 357–370.
|
[71] | Hwang IK, Kang TC, Lee JC, Park SK, An SJ, et al. (2003) Chronological alterations of calbindin D-28k immunoreactivity in the gerbil main olfactory bulb after ischemic insult. Brain Res 971: 250–254.
|
[72] | Freund TF, Ylinen A, Miettinen R, Pitkanen A, Lahtinen H, et al. (1992) Pattern of neuronal death in the rat hippocampus after status epilepticus. Relationship to calcium binding protein content and ischemic vulnerability. Brain Res Bull 28: 27–38.
|
[73] | Klapstein GJ, Vietla S, Lieberman DN, Gray PA, Airaksinen MS, et al. (1998) Calbindin-D28k fails to protect hippocampal neurons against ischemia in spite of its cytoplasmic calcium buffering properties: evidence from calbindin-D28k knockout mice. Neuroscience 85: 361–373.
|
[74] | Tymianski M, Wallace MC, Spigelman I, Uno M, Carlen PL, et al. (1993) Cell-permeant Ca2+ chelators reduce early excitotoxic and ischemic neuronal injury in vitro and in vivo. Neuron 11: 221–235.
|
[75] | Tymianski M, Spigelman I, Zhang L, Carlen PL, Tator CH, et al. (1994) Mechanism of action and persistence of neuroprotection by cell-permeant Ca2+ chelators. J Cereb Blood Flow Metab 14: 911–923.
|
[76] | Abdel-Hamid KM, Baimbridge KG (1997) The effects of artificial calcium buffers on calcium responses and glutamate-mediated excitotoxicity in cultured hippocampal neurons. Neuroscience 81: 673–687.
|
[77] | Cronberg T, Rytter A, Wieloch T (2005) Chelation of intracellular calcium reduces cell death after hyperglycemic in vitro ischemia in murine hippocampal slice cultures. Brain Res 1049: 120–127.
|
[78] | Dubinsky JM (1993) Effects of calcium chelators on intracellular calcium and excitotoxicity. Neurosci Lett 150: 129–132.
|
[79] | Barone FC, White RF, Spera PA, Ellison J, Currie RW, et al.. (1998) Ischemic preconditioning and brain tolerance: temporal histological and functional outcomes, protein synthesis requirement, and interleukin-1 receptor antagonist and early gene expression. Stroke 29: 1937–1950; discussion 1950–1931.
|
[80] | Kirino T (2002) Ischemic tolerance. J Cereb Blood Flow Metab 22: 1283–1296.
|
[81] | Jung M, Sola A, Hughes J, Kluth DC, Vinuesa E, et al. (2012) Infusion of IL-10-expressing cells protects against renal ischemia through induction of lipocalin-2. Kidney Int 81: 969–982.
|
[82] | Levin SG, Godukhin OV (2011) Anti-inflammatory cytokines, TGF-beta1 and IL-10, exert anti-hypoxic action and abolish posthypoxic hyperexcitability in hippocampal slice neurons: comparative aspects. Exp Neurol 232: 329–332.
|
[83] | Lin RC, Scheller RH (2000) Mechanisms of synaptic vesicle exocytosis. Annu Rev Cell Dev Biol 16: 19–49.
|
[84] | Hasko G, Szabo C, Nemeth ZH, Lendvai B, Vizi ES (1998) Modulation by dantrolene of endotoxin-induced interleukin-10, tumour necrosis factor-alpha and nitric oxide production in vivo and in vitro. Br J Pharmacol 124: 1099–1106.
|
[85] | Wang X, Li X, Erhardt JA, Barone FC, Feuerstein GZ (2000) Detection of tumor necrosis factor-alpha mRNA induction in ischemic brain tolerance by means of real-time polymerase chain reaction. J Cereb Blood Flow Metab 20: 15–20.
|
[86] | Wang X, Li X, Currie RW, Willette RN, Barone FC, et al. (2000) Application of real-time polymerase chain reaction to quantitate induced expression of interleukin-1beta mRNA in ischemic brain tolerance. J Neurosci Res 59: 238–246.
|
[87] | Ohtsuki T, Ruetzler CA, Tasaki K, Hallenbeck JM (1996) Interleukin-1 mediates induction of tolerance to global ischemia in gerbil hippocampal CA1 neurons. J Cereb Blood Flow Metab 16: 1137–1142.
|
[88] | Mallard C, Hagberg H (2007) Inflammation-induced preconditioning in the immature brain. Semin Fetal Neonatal Med 12: 280–286.
|
[89] | Gerard C, Bruyns C, Marchant A, Abramowicz D, Vandenabeele P, et al. (1993) Interleukin 10 reduces the release of tumor necrosis factor and prevents lethality in experimental endotoxemia. J Exp Med 177: 547–550.
|
[90] | Spera PA, Ellison JA, Feuerstein GZ, Barone FC (1998) IL-10 reduces rat brain injury following focal stroke. Neurosci Lett 251: 189–192.
|
[91] | Yang J, Ahn HN, Chang M, Narasimhan P, Chan PH, et al. (2013) Complement component 3 inhibition by an antioxidant is neuroprotective after cerebral ischemia and reperfusion in mice. J Neurochem 124: 523–535.
|
[92] | Hwang IK, Yoo KY, Kim DW, Lee HJ, Kang HY, et al. (2006) Transient ischemia-induced changes of interleukin-2 and its receptor beta immunoreactivity and levels in the gerbil hippocampal CA1 region. Brain Res 1106: 197–204.
|
[93] | Ishikawa M, Vowinkel T, Stokes KY, Arumugam TV, Yilmaz G, et al. (2005) CD40/CD40 ligand signaling in mouse cerebral microvasculature after focal ischemia/reperfusion. Circulation 111: 1690–1696.
|
[94] | Tan J, Town T, Mori T, Obregon D, Wu Y, et al. (2002) CD40 is expressed and functional on neuronal cells. EMBO J 21: 643–652.
|