[1] | Meiners T, Peri E (2013) Chemical ecology of insect parasitoids: essential elements for developing effective biological control programmes. In: Wajnberg E, Colazza S editors. Chemical Ecology of Insect Parasitoids. Wiley-Blackwell. 197–228.
|
[2] | Vinson SB (1991) Chemical signals used by parasitoids. Redia 74: 15–42.
|
[3] | Vinson SB (1998) The general host selection behavior of parasitoid Hymenoptera and a comparison of initial strategies utilized by larvaphagous and oophagous species. Biol Control 11: 79–96.
|
[4] | Vet LEM, Dicke M (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Annu Rev Entomol 37: 141–172.
|
[5] | Godfray HCJ (1994) Parasitoids: behavioral and evolutionary ecology. Princeton: Princeton University Press. 488 p.
|
[6] | Rostás M, Ruf D, Zabka V, Hildebrandt U (2008) Plant surface wax affects parasitoid’s response to host footprints. Naturwissenschaften 95: 997–1002.
|
[7] | Colazza S, Lo Bue M, Lo Giudice D, Peri E (2009) The response of Trissolcus basalis to footprint contact kairomones from Nezara viridula females is mediated by leaf epicuticular waxes. Naturwissenschaften 96: 975–981.
|
[8] | Conti E, Salerno G, Leombruni B, Frati F, Bin F (2010) Short-range allelochemicals from a plant–herbivore association: a singular case of oviposition-induced synomone for an egg parasitoid. J Exp Biol 213: 3911–3919.
|
[9] | Lo Giudice D, Riedel M, Rostás M, Peri E, Colazza S (2011) Host sex discrimination by an egg parasitoid on brassica leaves. J Chem Ecol 37: 622–628.
|
[10] | Salerno G, Frati F, Iacovone A, Conti E, Peri E, et al. (2012) A female-produced short-range sex pheromone in the egg parasitoid Trissolcus brochymenae. Invertebr Biol 131: 144–153.
|
[11] | Frati F, Salerno G, Conti E (2013). Cabbage waxes affect Trissolcus brochymenae response to short-range synomones. Insect Science doi: 10.1111/j.1744-7917.2012.01575.x.
|
[12] | Colazza S, Salerno G, Wajnberg E (1999) Volatile and contact chemicals released by Nezara viridula (Heteroptera: Pentatomidae) have a kairomonal effect on the egg parasitoid Trissolcus basalis (Hymenoptera: Scelionidae). Biol Control 16: 310–317.
|
[13] | Borges M, Colazza S, Ramirez-Lucas P, Chauhan KR, Kramer M, et al. (2003) Kairomonal effect of walking traces from Euschistus heros (Heteroptera: Pentatomidae) on two strains of Telenomus podisi (Hymenoptera: Scelionidade). Physiol Entomol 28: 349–355.
|
[14] | Conti E, Salerno G, Bin F, Williams HJ, Vinson SB (2003) Chemical cues from Murgantia histrionica eliciting host location and recognition in the egg parasitoid Trissolcus brochymenae. J Chem Ecol 29: 115–130.
|
[15] | Vinson SB (2010) Nutritional ecology of insect parasitoids. In: Parra JRP, Consoli FL, Zucchi RA, editors. Egg parasitoids in agroecosystems with emphysis on Trichogramma. Springer. 25–55.
|
[16] | Fatouros NE, Dicke M, Mumm R, Meiners T, Hilker M (2008) Foraging behavior of egg parasitoids exploiting chemical information. Behav Ecol 19: 677–689.
|
[17] | Colazza S, Peri E, Salerno G, Conti E (2010) Host searching by egg parasitoids: exploitation of host chemical cues. In: Parra JRP, Consoli FL, Zucchi RA editors. Egg parasitoids in agroecosystems with emphasis on Trichogramma. Springer. 97–147.
|
[18] | Conti E, Salerno G, Bin F, Vinson SB (2004) The role of host semiochemicals in parasitoid specificity: a case study with Trissolcus brochymenae and Trissolcus simoni on pentatomid bugs. Biol Control 29: 435–444.
|
[19] | Salerno G, Conti E, Peri E, Colazza S, Bin F (2006) Kairomone involvement in the host specificity of the egg parasitoid Trissolcus basalis.. Eur J Entomol 103: 311–318.
|
[20] | Colazza S, Aquila G, De Pasquale C, Peri E, Millar J (2007) The egg parasitoid Trissolcus basalis uses n-nonadecane, a cuticular hydrocarbon from its stink bug host Nezara viridula, to discriminate between female and male hosts. J Chem Ecol 33: 1405–1420.
|
[21] | Salerno G, Frati F, Conti E, De Pasquale C, Peri E, et al. (2009) A finely tuned strategy adopted by an egg parasitoid to exploit chemical traces from host adults. J Exp Biol 212: 1825–1831.
|
[22] | Steidle JLM, van Loon JJA (2003) Dietary specialization and infochemicals use in carnivorous arthropods: testing a concept. Entomol Exp Appl 108: 133–148.
|
[23] | Correa-Ferreira SB, Moscardi F (1995) Seasonal occurrence and host spectrum of egg parasitoids associated with soybean stink bugs. Biol Control 5: 196–202.
|
[24] | Buschmann LL, Whitcomb WH (1980) Parasites of Nezara viridula (Hemiptera: Pentatomidae) and other Hemiptera in Florida. Fla Entomol 63: 154–167.
|
[25] | Safavi M (1968) Etude biologique et écologique des hyménoptères parasites des ?ufs des punaises des céréales. Entomophaga 13: 381–495.
|
[26] | Colazza S, Peri D, Salerno G, Peri E, Lo Pinto M, et al.. (1999) Xbug, a video tracking and motion analysis system for LINUX. XII International Entomophagous Insects Workshop. Pacific Grove, California, September 26–30, 1999.
|
[27] | StatSoft (2001) Statistica per Windows, User’s Manual. StatSoft Italia, Vigonza, Padova, Italy.
|
[28] | Zar JH (1999) Biostatistical Analysis. New Jersey: Prentice Hall. 663 p.
|
[29] | Obrycki JJ (1986) The influence of foliar pubescence on entomophagous species. In: Boethel DJ, Eikenbarry RD editors. Interactions of plant resistance and parasitoids and predators of insects. Wiley-Blackwell. 61–83.
|
[30] | Andow DA, Prokrym DR (1990) Plant structural complexity and host finding by a parasitoid. Oecologia 82: 162–165.
|
[31] | Romeis J, Shanower TG, Zebitz CPW (2003) Physical and chemical plant characters inhibiting the searching behaviour of Trichogramma chilonis. Entomol Exp Appl 87: 275–284.
|
[32] | Espelie KE, Bernays EA, Brown JJ (1991) Plant and insect cuticular lipids serve as behavioral cues for insects. Arch Insect Biochem Physiol 17: 223–233.
|
[33] | Mc Auslane HJ, Simmons AM, Jackson DM (2000) Parasitism of Bemisia argentifolii on collard with reduced or normal leaf wax. Fla Entomol 83: 428–437.
|
[34] | Eigenbrode SD, Jetter R (2002) Attachment to plant surface waxes by an insect predator. Integr Comp Biol 42: 1091–1099.
|
[35] | Gentry GL, Barbosa P (2006) Effects of leaf epicuticular wax on the movement, foraging behavior, and attack efficacy of Diaeretiella rapae. Entomol Exp Appl 121: 115–122.
|
[36] | Peri E, Sole MA, Wajnberg E, Colazza S (2006) Effect of host kairomones and oviposition experience on the arrestment behavior of an egg parasitoid. J Exp Biol 209: 3629–3635.
|
[37] | Vinson SB (1977) Behavioural chemicals in the augmentation of natural enemies. In: Ridgway RL, Vinson SB editors. Biological Control by Augmentation of Natural Enemies. Plenum. 237–279.
|
[38] | Powell W, Pickett JA (2003) Manipulation of parasitoids for aphid pest management: progress and prospects. Pest Manag Sci 59: 149–155.
|
[39] | Puente ME, Kennedy GG, Gould F (2008) The impact of herbivore-induced plant volatiles on parasitoid foraging success: a general deterministic model. J Chem Ecol 34: 945–958.
|
[40] | Loxdale HD, Lushai G, Harvey JA (2011) The evolutionary improbability of ‘generalism’ in nature, with special reference to insects. Biol J Linn Soc 103: 1–18.
|
[41] | Schreiber SJ, Fox LR, Getz WM (2002) Parasitoid sex allocation affects co-evolution of patch selection and stability in host–parasitoid systems. Evol Ecol Res 4: 701–717.
|
[42] | Powell W, Pennacchio F, Poppy GM, Tremblay E (1998) Strategies involved in the location of hosts by the parasitoid Aphidius ervi Haliday (Hymenoptera: Braconidae: Aphidiinae). Biol Control 11: 104–112.
|
[43] | De Moraes CM, Lewis WJ, Paré PW, Alborn HT, Tumlinson JH (1998) Herbivore infested plants selectively attract parasitoids. Nature 393: 570–573.
|
[44] | Alborn HT, Lewis WJ, Tumlinson JH (1995) Hostspecific recognition kairomone for the parasitoid Microplitis croceipes (Cresson). J Chem Ecol 21: 1697–1708.
|
[45] | Rogers ME, Potter DA (2002) Kairomones from scarabaeid grubs and their frass as cues in below-ground host location by the parasitoids Tiphia vernalis and Tiphia pygidialis. Entomol Exp Appl 102: 307–314.
|
[46] | Meiners T, Westerhaus C, Hilker M (2000) Specificity of chemical cues used by a specialist egg parasitoid during host location. Entomol Exp Appl 95: 151–159.
|
[47] | Kotler BP, Mitchell WA (1995) The effect of costly information in diet choice. Evol Ecol 9: 18–29.
|
[48] | Janz N (2002) Evolutionary ecology of oviposition strategies. In: Hilker M, Meiners T editors. Chemoecology of insect eggs and egg deposition. Blackwell. 349–376.
|