Aberrant activation of Wnt signaling is frequent in human malignancies. In normal epithelial tissues, including the breast, Wnt signaling is active only in a subset of cells, but it is unknown whether this subset of Wnt signaling-active cells is at increased risk of carcinogenesis. We created transgenic mice (TOP-tva) in which the synthetic Wnt-responsive promoter TOP controlled the gene encoding TVA, which confers susceptibility to infection by the retroviral vector RCAS. Thus, only cells in which Wnt signaling is active will express tva and be targeted by RCAS. Surprisingly, we found that RCAS-mediated delivery of cDNA encoding a constitutively activated version of ErbB2 (HER2/Neu) into the small number of TVA+ mammary epithelial cells in TOP-tva mice failed to induce tumor, while the same virus readily induced mammary tumors after it was delivered into a comparable number of cells in our previously reported mouse line MMTV-tva, whose tva is broadly expressed in mammary epithelium. Furthermore, we could not even detect any early lesions or infected cells in TOP-tva mice at the time of necropsy. Therefore, we conclude that the Wnt pathway-active cell subset in the normal mammary epithelium does not evolve into tumors following ErbB2 activation–rather, they apparently die due to apoptosis, an anticancer “barrier” that we have reported to be erected in some mammary cells followed ErbB2 activation. In accord with these mouse model data, we found that unlike the basal subtype, ErbB2+ human breast cancers rarely involve aberrant activation of Wnt signaling. This is the first report of a defined sub-population of mammalian cells that is “protected” from tumorigenesis by a potent oncogene, and provides direct in vivo evidence that mammary epithelial cells are not equal in their response to oncogene-initiated transformation.
References
[1]
Clevers H, Nusse R (2012) Wnt/beta-catenin signaling and disease. Cell 149: 1192–1205.
[2]
Nusse R, Varmus H (2012) Three decades of Wnts: a personal perspective on how a scientific field developed. EMBO J 31: 2670–2684.
[3]
Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434: 843–850.
[4]
Klaus A, Birchmeier W (2008) Wnt signalling and its impact on development and cancer. Nat Rev Cancer 8: 387–398.
[5]
Liu CC, Prior J, Piwnica-Worms D, Bu G (2010) LRP6 overexpression defines a class of breast cancer subtype and is a target for therapy. Proc Natl Acad Sci U S A 107: 5136–5141.
[6]
Khramtsov AI, Khramtsova GF, Tretiakova M, Huo D, Olopade OI, et al. (2010) Wnt/beta-catenin pathway activation is enriched in basal-like breast cancers and predicts poor outcome. Am J Pathol 176: 2911–2920.
[7]
Geyer FC, Lacroix-Triki M, Savage K, Arnedos M, Lambros MB, et al. (2011) beta-Catenin pathway activation in breast cancer is associated with triple-negative phenotype but not with CTNNB1 mutation. Mod Pathol 24: 209–231.
[8]
Lin SY, Xia W, Wang JC, Kwong KY, Spohn B, et al. (2000) Beta-catenin, a novel prognostic marker for breast cancer: its roles in cyclin D1 expression and cancer progression. Proc Natl Acad Sci U S A 97: 4262–4266.
[9]
Suzuki H, Toyota M, Carraway H, Gabrielson E, Ohmura T, et al. (2008) Frequent epigenetic inactivation of Wnt antagonist genes in breast cancer. Br J Cancer 98: 1147–1156.
[10]
DiMeo TA, Anderson K, Phadke P, Fan C, Perou CM, et al. (2009) A novel lung metastasis signature links Wnt signaling with cancer cell self-renewal and epithelial-mesenchymal transition in basal-like breast cancer. Cancer Res 69: 5364–5373.
[11]
Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, et al. (2007) The genomic landscapes of human breast and colorectal cancers. Science 318: 1108–1113.
[12]
Kirikoshi H, Katoh M (2002) Expression of WNT7A in human normal tissues and cancer, and regulation of WNT7A and WNT7B in human cancer. Int J Oncol 21: 895–900.
[13]
Ayyanan A, Civenni G, Ciarloni L, Morel C, Mueller N, et al. (2006) Increased Wnt signaling triggers oncogenic conversion of human breast epithelial cells by a Notch-dependent mechanism. Proc Natl Acad Sci U S A 103: 3799–3804.
[14]
Wang Y, Krivtsov AV, Sinha AU, North TE, Goessling W, et al. (2010) The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science 327: 1650–1653.
[15]
Malanchi I, Peinado H, Kassen D, Hussenet T, Metzger D, et al. (2008) Cutaneous cancer stem cell maintenance is dependent on beta-catenin signalling. Nature 452: 650–653.
[16]
Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, et al. (2004) Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 351: 657–667.
[17]
Zhang M, Atkinson RL, Rosen JM (2010) Selective targeting of radiation-resistant tumor-initiating cells. Proceedings of the National Academy of Sciences of the United States of America 107: 3522–3527.
[18]
Barker N, Ridgway RA, van Es JH, van de Wetering M, Begthel H, et al. (2009) Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457: 608–611.
[19]
Zeng YA, Nusse R (2010) Wnt proteins are self-renewal factors for mammary stem cells and promote their long-term expansion in culture. Cell Stem Cell 6: 568–577.
[20]
Lindvall C, Evans NC, Zylstra CR, Li Y, Alexander CM, et al. (2006) The Wnt signaling receptor Lrp5 is required for mammary ductal stem cell activity and Wnt1-induced tumorigenesis. J Biol Chem 281: 35081–35087.
[21]
Lindvall C, Zylstra CR, Evans N, West RA, Dykema K, et al. (2009) The Wnt co-receptor Lrp6 is required for normal mouse mammary gland development. PLoS ONE 4: e5813.
[22]
Badders NM, Goel S, Clark RJ, Klos KS, Kim S, et al. (2009) The Wnt receptor, Lrp5, is expressed by mouse mammary stem cells and is required to maintain the basal lineage. PLoS ONE 4: e6594.
[23]
Lindvall C, Bu W, Williams BO, Li Y (2007) Wnt signaling, stem cells, and the cellular origin of breast cancer. Stem Cell Rev 3: 157–168.
[24]
van Amerongen R, Bowman AN, Nusse R (2012) Developmental stage and time dictate the fate of Wnt/beta-catenin-responsive stem cells in the mammary gland. Cell Stem Cell 11: 387–400.
[25]
Dorsky RI, Sheldahl LC, Moon RT (2002) A transgenic Lef1/beta-catenin-dependent reporter is expressed in spatially restricted domains throughout zebrafish development. Dev Biol 241: 229–237.
[26]
Bu W, Chen J, Morrison GD, Huang S, Creighton CJ, et al. (2011) Keratin 6a marks mammary bipotential progenitor cells that can give rise to a unique tumor model resembling human normal-like breast cancer. Oncogene 30: 4399–4409.
[27]
Du Z, Podsypanina K, Huang S, McGrath A, Toneff MJ, et al. (2006) Introduction of oncogenes into mammary glands in vivo with an avian retroviral vector initiates and promotes carcinogenesis in mouse models. Proc Natl Acad Sci U S A 103: 17396–17401.
[28]
Reddy JP, Li Y (2009) The RCAS-TVA system for introduction of oncogenes into selected somatic mammary epithelial cells in vivo. J Mammary Gland Biol Neoplasia 14: 405–409.
[29]
Huang S, Li Y, Chen Y, Podsypanina K, Chamorro M, et al. (2005) Changes in gene expression during the development of mammary tumors in MMTV-Wnt-1 transgenic mice. Genome biology 6: R84.
[30]
Zhang XH, Wang Q, Gerald W, Hudis CA, Norton L, et al. (2009) Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer Cell 16: 67–78.
[31]
van de Wetering M, Cavallo R, Dooijes D, van Beest M, van Es J, et al. (1997) Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88: 789–799.
[32]
Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R, et al. (1997) Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC?/? colon carcinoma. Science 275: 1784–1787.
[33]
DasGupta R, Fuchs E (1999) Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development 126: 4557–4568.
[34]
Chu EY, Hens J, Andl T, Kairo A, Yamaguchi TP, et al. (2004) Canonical WNT signaling promotes mammary placode development and is essential for initiation of mammary gland morphogenesis. Development 131: 4819–4829.
[35]
Holland EC, Li Y, Celestino J, Dai C, Schaefer L, et al. (2000) Astrocytes give rise to oligodendrogliomas and astrocytomas after gene transfer of polyoma virus middle T antigen in vivo. Am J Pathol 157: 1031–1037.
[36]
Dilworth SM (2002) Polyoma virus middle T antigen and its role in identifying cancer-related molecules. Nat Rev Cancer 2: 951–956.
[37]
Guy CT, Cardiff RD, Muller WJ (1992) Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol 12: 954–961.
[38]
Du Z, Li Y (2007) RCAS-TVA in the mammary gland: an in vivo oncogene screen and a high fidelity model for breast transformation? Cell Cycle 6: 823–826.
[39]
Li Y, Ferris A, Lewis BC, Orsulic S, Williams BO, et al. (2011) The RCAS/TVA somatic gene transfer method in modeling human cancer. In: Green JE, Ried T, editors. Genetically-engineered mice for cancer research: design, analysis, pathways, validation and pre-clinical testing: Springer 83–111.
[40]
Lowe SW, Cepero E, Evan G (2004) Intrinsic tumour suppression. Nature 432: 307–315.
[41]
Halazonetis TD, Gorgoulis VG, Bartek J (2008) An oncogene-induced DNA damage model for cancer development. Science 319: 1352–1355.
[42]
Reddy JP, Peddibhotla S, Bu W, Zhao J, Haricharan S, et al. (2010) Defining the ATM-mediated barrier to tumorigenesis in somatic mammary cells following ErbB2 activation. Proc Natl Acad Sci U S A 107: 3728–3733.
[43]
Smid M, Wang Y, Zhang Y, Sieuwerts AM, Yu J, et al. (2008) Subtypes of breast cancer show preferential site of relapse. Cancer research 68: 3108–3114.
[44]
Yang L, Wu X, Wang Y, Zhang K, Wu J, et al. (2011) FZD7 has a critical role in cell proliferation in triple negative breast cancer. Oncogene 30: 4437–4446.
[45]
Ursini-Siegel J, Schade B, Cardiff RD, Muller WJ (2007) Insights from transgenic mouse models of ERBB2-induced breast cancer. Nat Rev Cancer 7: 389–397.
[46]
Moody SE, Sarkisian CJ, Hahn KT, Gunther EJ, Pickup S, et al. (2002) Conditional activation of Neu in the mammary epithelium of transgenic mice results in reversible pulmonary metastasis. Cancer Cell 2: 451–461.
[47]
Li Y, Rosen JM (2005) Stem/progenitor cells in mouse mammary gland development and breast cancer. J Mammary Gland Biol Neoplasia 10: 17–24.
[48]
Prat A, Perou CM (2009) Mammary development meets cancer genomics. Nat Med 15: 842–844.
[49]
Ni M, Chen Y, Lim E, Wimberly H, Bailey ST, et al. (2011) Targeting androgen receptor in estrogen receptor-negative breast cancer. Cancer Cell 20: 119–131.
[50]
Khalil S, Tan GA, Giri DD, Zhou XK, Howe LR (2012) Activation status of Wnt/beta-catenin signaling in normal and neoplastic breast tissues: relationship to HER2/neu expression in human and mouse. PLoS One 7: e33421.
[51]
Sircoulomb F, Bekhouche I, Finetti P, Adelaide J, Ben Hamida A, et al. (2010) Genome profiling of ERBB2-amplified breast cancers. BMC Cancer 10: 539.
[52]
Hallett RM, Kondratyev MK, Giacomelli AO, Nixon AM, Girgis-Gabardo A, et al. (2012) Small molecule antagonists of the Wnt/beta-catenin signaling pathway target breast tumor-initiating cells in a Her2/Neu mouse model of breast cancer. PLoS One 7: e33976.
[53]
Green JL, La J, Yum KW, Desai P, Rodewald LW, et al. (2013) Paracrine Wnt signaling both promotes and inhibits human breast tumor growth. Proc Natl Acad Sci U S A 110: 6991–6996.
[54]
Schade B, Lesurf R, Sanguin-Gendreau V, Bui T, Deblois G, et al. (2013) beta-Catenin signaling is a critical event in ErbB2-mediated mammary tumor progression. Cancer Res 73: 4474–4487.
[55]
Li Y, Welm B, Podsypanina K, Huang S, Chamorro M, et al. (2003) Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc Natl Acad Sci U S A 100: 15853–15858.
[56]
O’Toole SA, Beith JM, Millar EK, West R, McLean A, et al. (2013) Therapeutic targets in triple negative breast cancer. J Clin Pathol 66: 530–542.
[57]
Henry MD, Triplett AA, Oh KB, Smith GH, Wagner KU (2004) Parity-induced mammary epithelial cells facilitate tumorigenesis in MMTV-neu transgenic mice. Oncogene 23: 6980–6985.
[58]
Jeselsohn R, Brown NE, Arendt L, Klebba I, Hu MG, et al. (2010) Cyclin D1 kinase activity is required for the self-renewal of mammary stem and progenitor cells that are targets of MMTV-ErbB2 tumorigenesis. Cancer Cell 17: 65–76.
[59]
Reddy JP, Peddibhotla S, Bu W, Zhao J, Haricharan S, et al. (2010) Defining the ATM-mediated barrier to tumorigenesis in somatic mammary cells following ErbB2 activation. Proceedings of the National Academy of Sciences of the United States of America 107: 3728–3733.
[60]
Sansom OJ, Meniel V, Wilkins JA, Cole AM, Oien KA, et al. (2006) Loss of Apc allows phenotypic manifestation of the transforming properties of an endogenous K-ras oncogene in vivo. Proc Natl Acad Sci U S A 103: 14122–14127.
[61]
Podsypanina K, Li Y, Varmus HE (2004) Evolution of somatic mutations in mammary tumors in transgenic mice is influenced by the inherited genotype. BMC Med 2: 24.