全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Bone Regeneration in Rat Cranium Critical-Size Defects Induced by Cementum Protein 1 (CEMP1)

DOI: 10.1371/journal.pone.0078807

Full-Text   Cite this paper   Add to My Lib

Abstract:

Gene therapy approaches to bone and periodontal tissue engineering are being widely explored. While localized delivery of osteogenic factors like BMPs is attractive for promotion of bone regeneration; method of delivery, dosage and side effects could limit this approach. A novel protein, Cementum Protein 1 (CEMP1), has recently been shown to promote regeneration of periodontal tissues. In order to address the possibility that CEMP1 can be used to regenerate other types of bone, experiments were designed to test the effect of hrCEMP1 in the repair/regeneration of a rat calvaria critical-size defect. Histological and microcomputed tomography (μCT) analyses of the calvaria defect sites treated with CEMP1 showed that after 16 weeks, hrCEMP1 is able to induce 97% regeneration of the defect. Furthermore, the density and characteristics of the new mineralized tissues were normal for bone. This study demonstrates that hrCEMP1 stimulates bone formation and regeneration and has therapeutic potential for the treatment of bone defects and regeneration of mineralized tissues.

References

[1]  Szpalski C, Barr J, Wetterau M, Saadeh PB, Warren SM (2010) Cranial bone defects: current and future strategies. Neurosurg Focus 29: E8.
[2]  Carofino BC, Lieberman JR (2008) Gene therapy applications for fracture-healing. J Bone Joint Surg Am 90A: 99–110.
[3]  Virk MS, Sugiyama O, Park SH, Gambhir SS, Adams DJ, et al. (2011) “Same day” ex-vivo regional gene therapy: a novel strategy to enhance bone repair. Mol Ther 19: 960–968.
[4]  Jansen JA, Vehof JWM, Ruhé PQ, Kroeze-Deutman H, Kuboki Y, et al. (2005) Growth factor-loaded scaffolds for bone engineering, J Control Release. 101: 127–136.
[5]  Gautschi OP, Frey SP, Zellweger R (2007) Bone morphogenetic proteins in clinical applications. ANZ J Surg 77: 626–631.
[6]  Hogan BL (1996) Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev 10: 1580–1594.
[7]  King GN, King N, Cruchley AT, Wozney JM, Hughes FJ (1997) Recombinant human bone morphogenetic protein-2 promotes wound healing in rat periodontal fenestration defects. J Dent Res 76: 1460–1470.
[8]  Giannobile WV, Ryan S, Shih MS, Su DL, Kaplan PL, et al. (1998) Recombinant human osteogenic protein-1 (OP-1) stimulates periodontal wound healing in class III furcation defects. J Periodontol 69: 129–137.
[9]  Geesink RG, Hoefnagels NH, Bulstra SK (1999) Osteogenic activity of OP-1 bone morphogenetic protein (BMP-7) in a human fibular defect. J Bone Joint Surg Br 81: 710–718.
[10]  Cochran DL, Jones AA, Lilly LC, Fiorellini JP, Howell H (2000) Evaluation of recombinant human bone morphogenetic protein-2 in oral applications including the use of endosseous implants: 3-year results of a pilot study in humans. J Periodontol 71: 1241–1257.
[11]  Kirker-Head CA (2000) Potential applications and delivery strategies for bone morphogenetic proteins. Adv Drug Deliv Rev 43: 65–92.
[12]  Franceschi RT (2005) Biological approaches to bone regeneration by gene therapy. J Dent Res 84: 1093–1103.
[13]  Kwon B, Jenis LG (2005) Carrier materials for spinal fusion. Spine J 5(6 Suppl): 224S–230S.
[14]  Gautschi OP, Frey SP (2003) Zellweger (2003) Bone morphogenetic proteins in clinical applications. ANZ J Surg 77: 626–631.
[15]  Bessa PC, Casal M, Reis RI (2008) Bone morphogenetic proteins in tissue engineering: the road from laboratory to the clinic. Part I (basic concepts). J Tissue Eng Regen Med 2: 1–13.
[16]  Arzate H, Jiménez LF, Alvarez M, Landa A, Bar-Kana I, et al. (2002) Immunolocalization of a human cementoblastoma-conditioned medium-derived protein. J Dent Res 81: 541–546.
[17]  Alvarez M, Narayanan AS, Zeichner-David M, Carmona B, Arzate H (2006) Molecular cloning, expression and immunolocalization of a novel human cementum-derived protein (CP-23). Bone 38: 409–419.
[18]  Carmona-Rodríguez B, Alvarez-Pérez MA, Narayanan AS, Zeichner-David M, Reyes-Gasga J, et al. (2007) Human Cementum Protein 1 induces expression of bone and cementum proteins by human gingival fibroblasts. Biochem Biophys Res Comm 358: 763–769.
[19]  Hoz L, Romo E, Zeichner-David M, Sanz M, Nu?ez J, et al. (2012) Cementum protein 1 (CEMP1) induces differentiation by human periodontal ligament cells under three-dimensional culture conditions. Cell Biol Int 36: 129–136.
[20]  Silverman L, Boskey AL (2004) Diffusion systems for evaluation of biomineralization. Calcif Tissue Int 75: 494–501.
[21]  Hunter GK, Goldberg HA (1993) Nucleation of hydroxyapatite by bone sialoprotein. Proc Natl Acad Sci U S A 90: 8562–8565.
[22]  Garcia-Ruiz JM (2003) Counter-diffusion methods for macromolecular crystallization. Methods Enzymol 368: 130–154.
[23]  Cuisinier FJ, Glaisher RW, Voegel JC, Hutchison JL, Brès EF, et al. (1991) Compositional variations in apatites with respect to preferential ionic extraction. Ultramicroscopy 36: 297–305.
[24]  Arzate H, Alvarez M, Aguilar ME, Alvarez O (1998) Human cementum tumor cells have different features from human osteoblastic cells in vitro. J Periodontal Res 33: 249–258.
[25]  Huang YC, Simmons C, Kaigler D, Rice KG, Mooney DJ (2005) Bone regeneration in a rat cranial defect with delivery of PEI-condensed plasmid DNA encoding for bone morphogenetic protein-4 (BMP-4). Gene Ther 12: 418–426.
[26]  Stancoven BW, Lee J, Dixon DR, McPherson JC 3rd, Bisch FC, et al. (2013) Effect of bone morphogenetic protein-2, demineralized bone matrix and systemic parathyroid hormone (1–34) on local bone formation in a rat calvaria critical-size defect model. J Periodontal Res 48: 243–251.
[27]  Nu?ez J, Sanz M, Hoz-Rodríguez L, Zeichner-David M, Arzate H (2010) Human cementoblasts express enamel-associated molecules in vitro and in vivo. J Periodontal Res 45: 809–814.
[28]  Suzuki O (2010) Octacalcium phosphate: osteoconductivity and crystal chemistry. Acta Biomater 6: 3379–3387.
[29]  Brown WE, Smith JP, Lehr JR, Frazier AW (1962) Crystallographic and chemical relations between octacalcium phosphate and hydroxyapatite. Nature 196: 1050–1055.
[30]  Suzuki O, Nakamura M, Miyasaka Y, Kagayama M, Sakurai M (1991) Bone formation on synthetic precursors of hydroxyapatite. Tohoku J Exp Med 164: 37–50.
[31]  Kikawa T, Kashimoto O, Imaizumi H, Kokubun S, Suzuki O (2009) Intramembranous bone tissue response to biodegradable octacalcium phosphate implant. Acta Biomater 5: 1756–1766.
[32]  Suzuki O, Kamakura S, Katagiri T, Nakamura M, Zhao B, et al. (2006) Bone formation enhanced by implanted octacalcium phosphate involving conversion into Ca-deficient hydroxyapatite. Biomaterials 27: 2671–2681.
[33]  Shelton RM, Liu Y, Cooper PR, Gbureck U, German MJ, et al. (2006) Bone marrow cell gene expression and tissue construct assembly using octacalcium phosphate microscaffolds. Biomaterials 27: 2874–2881.
[34]  Liu Y, Cooper PR, Barralet JE, Shelton RM (2007) Influence of calcium phosphate crystal assemblies on the proliferation and osteogenic gene expression of rat bone marrow stromal cells. Biomaterials 28: 1393–1403.
[35]  Anada T, Kumagai T, Honda Y, Masuda T, Kamijo R, et al. (2008) Dose-dependent osteogenic effect of octacalcium phosphate on mouse bone marrow stromal cells. Tissue Eng Part A 14: 965–978.
[36]  Huang Z, Cheng SL, Slatopolsky E (2001) Sustained activation of the extracellular signal-regulated kinase pathway is required for extracellular calcium stimulation of human osteoblast proliferation. J Biol Chem 276: 21351–1358.
[37]  Honda Y, Anada T, Kamakura S, Morimoto S, Kuriyagawa T, et al. (2009) The effect of microstructure of octacalcium phosphate on the bone regenerative property. Tissue Eng Part A 15: 1965–1973.
[38]  Rohanizadeh R, Swain MV, Mason RS (2008) Gelatin sponges (Gelfoam) as a scaffold for osteoblasts. J Mater Sci Mater Med 19: 1173–1182.
[39]  Damien CJ, Parsons JR (1991) Bone graft and bone graft substitutes: a review of current technology and applications. J Appl Biomater 2: 187–208.
[40]  Pang EK, Im SU, Kim CS, Choi SH, Chai JK, et al. (2004) Effect of recombinant human bone morphogenetic protein-4 dose on bone formation in a rat calvarial defect model. J Periodontol 75: 1364–1370.
[41]  Choi SH, Kim CK, Cho KS, Huh JS, Sorensen RG, et al. (2002) Effect of recombinant human bone morphogenetic protei-2/absorbable collagen sponge (rfBMP-2/ACS) on healing in 3-wall intrabony defects in dogs. J Periodontol 73: 63–72.
[42]  King GN, King N, Hughes FJ (1998) Two delivery systema for recombinant human morphogenetic protein-2 on periodontal regeneration in vivo. J Periodontal Res 33: 226–236.
[43]  H?m?l?inen KM, M??tt? E, Piirainen H, Marianne Sarkola, V?is?nen A, et al. (1998) Roles of acid/base nature and molecular weight in drug release from matrices of gelfoam and monoisopropyl ester of poly(vinyl methyl ether-maleic anhydride). J Control Release 56: 273–283.
[44]  Sela M, Arnon R (1960) Studies on the chemical basis of the antigenicity of proteins. 1. Antigenicity of polypeptidyl gelatins. Biochem J 75: 91–102.
[45]  Ponticiello MS, Schinagl RM, Kadiyala S, Barry FP (2000) Gelatin-based resorbable sponge as a carrier matrix for human mesenchymal stem cells in cartilage regeneration therapy. J Biomed Mater Res 52: 246–255.
[46]  Liening DA, Lundy L, Silberberg B, Finstuen K (1997) A comparison of the biocompatibility of three absorbable hemostatic agents in the rat middle ear. Otolaryngol Head Neck Surg 116: 454–457.
[47]  Kohara H, Tabata Y (2011) Enhancement of ectopic osteoid formation following the dual release of bone morphogenetic protein 2 and Wnt1 inducible signaling pathway protein 1 from gelatin sponges. Biomaterials 32: 5726–5732.
[48]  Finn MD, Schow SR, Schneiderman ED (1992) Osseous regeneration in the presence of four common hemostatic agents. J Oral Maxillofac Surg 50: 608–612.
[49]  Stanton JS, Salih V, Bentley G, Downes S (1995) The growth of chondrocytes using Gelfoam as a biodegradable scaffold. J Mater Sci Mater Med 6: 739–744.
[50]  Gittens SA, Uludag H (2001) Growth factor delivery for bone tissue engineering. J Drug Target 9: 407–429.
[51]  Takahashi Y, Yamamoto M, Tabata Y (2005) Osteogenic differentiation of mesenchymal stem cells in biodegradable sponges composed of gelatin and beta-tricalcium phosphate. Biomaterials 26: 3587–3596.
[52]  Takahashi Y, Yamamoto M, Tabata Y (2005) Enhanced osteoinduction by controlled release of bone morphogenetic protein-2 from biodegradable sponge composed of gelatin and beta-tricalcium phosphate. Biomaterials 26: 4856–4865.
[53]  Seeherman H, Wozney JM (2005) Delivery of bone morphogenetic proteins for orthopedic tissue regeneration. Cytokine Growth Factor Rev 16: 329–345.
[54]  Haidar ZS, Hamdy RC, Tabrizian M (2009) Delivery of recombinant bone morphogenetic proteins for bone regeneration and repair. Part A: Current challenges in BMP delivery. Biotechnol Lett 31: 1817–1824.
[55]  Krebsbach PH, Gu K, Franceschi RT, Rutherford RB (2000) Gene therapy-directed osteogenesis: BMP-7-transduced human fibroblasts form bone in vivo. Hum Gene Ther 11: 1201–1210.
[56]  Whang K, Tsai DC, Nam EK, Aitken M, Sprague SM, et al. (1998) Ectopic bone formation via rhBMP-2 delivery from porous bioabsorbable polymer scaffolds. J Biomed Mater Res 42: 491–499.
[57]  Wozney JM, Rosen V (1998) Bone morphogenetic protein and bone morphogenetic protein gene family in bone formation and repair. Clin Orthop 346: 26–37.
[58]  Paula-Silva FW, Ghosh A, Arzate H, Kapila S, da Silva LA, et al. (2010) Calcium hydroxide promotes cementogenesis and induces cementoblastic differentiation of mesenchymal periodontal ligament cells in a CEMP1- and ERK-dependent manner. Calcif Tissue Int 87: 144–157.
[59]  Alvarez M, Pitaru S, Alvarez O, Reyes J, Arzate H (2003) Anti-cementoblastoma-derived protein antibody partially inhibits mineralization on a cementoblastic cell line. J Struct Biol 143: 1–13.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133