[1] | Szpalski C, Barr J, Wetterau M, Saadeh PB, Warren SM (2010) Cranial bone defects: current and future strategies. Neurosurg Focus 29: E8.
|
[2] | Carofino BC, Lieberman JR (2008) Gene therapy applications for fracture-healing. J Bone Joint Surg Am 90A: 99–110.
|
[3] | Virk MS, Sugiyama O, Park SH, Gambhir SS, Adams DJ, et al. (2011) “Same day” ex-vivo regional gene therapy: a novel strategy to enhance bone repair. Mol Ther 19: 960–968.
|
[4] | Jansen JA, Vehof JWM, Ruhé PQ, Kroeze-Deutman H, Kuboki Y, et al. (2005) Growth factor-loaded scaffolds for bone engineering, J Control Release. 101: 127–136.
|
[5] | Gautschi OP, Frey SP, Zellweger R (2007) Bone morphogenetic proteins in clinical applications. ANZ J Surg 77: 626–631.
|
[6] | Hogan BL (1996) Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev 10: 1580–1594.
|
[7] | King GN, King N, Cruchley AT, Wozney JM, Hughes FJ (1997) Recombinant human bone morphogenetic protein-2 promotes wound healing in rat periodontal fenestration defects. J Dent Res 76: 1460–1470.
|
[8] | Giannobile WV, Ryan S, Shih MS, Su DL, Kaplan PL, et al. (1998) Recombinant human osteogenic protein-1 (OP-1) stimulates periodontal wound healing in class III furcation defects. J Periodontol 69: 129–137.
|
[9] | Geesink RG, Hoefnagels NH, Bulstra SK (1999) Osteogenic activity of OP-1 bone morphogenetic protein (BMP-7) in a human fibular defect. J Bone Joint Surg Br 81: 710–718.
|
[10] | Cochran DL, Jones AA, Lilly LC, Fiorellini JP, Howell H (2000) Evaluation of recombinant human bone morphogenetic protein-2 in oral applications including the use of endosseous implants: 3-year results of a pilot study in humans. J Periodontol 71: 1241–1257.
|
[11] | Kirker-Head CA (2000) Potential applications and delivery strategies for bone morphogenetic proteins. Adv Drug Deliv Rev 43: 65–92.
|
[12] | Franceschi RT (2005) Biological approaches to bone regeneration by gene therapy. J Dent Res 84: 1093–1103.
|
[13] | Kwon B, Jenis LG (2005) Carrier materials for spinal fusion. Spine J 5(6 Suppl): 224S–230S.
|
[14] | Gautschi OP, Frey SP (2003) Zellweger (2003) Bone morphogenetic proteins in clinical applications. ANZ J Surg 77: 626–631.
|
[15] | Bessa PC, Casal M, Reis RI (2008) Bone morphogenetic proteins in tissue engineering: the road from laboratory to the clinic. Part I (basic concepts). J Tissue Eng Regen Med 2: 1–13.
|
[16] | Arzate H, Jiménez LF, Alvarez M, Landa A, Bar-Kana I, et al. (2002) Immunolocalization of a human cementoblastoma-conditioned medium-derived protein. J Dent Res 81: 541–546.
|
[17] | Alvarez M, Narayanan AS, Zeichner-David M, Carmona B, Arzate H (2006) Molecular cloning, expression and immunolocalization of a novel human cementum-derived protein (CP-23). Bone 38: 409–419.
|
[18] | Carmona-Rodríguez B, Alvarez-Pérez MA, Narayanan AS, Zeichner-David M, Reyes-Gasga J, et al. (2007) Human Cementum Protein 1 induces expression of bone and cementum proteins by human gingival fibroblasts. Biochem Biophys Res Comm 358: 763–769.
|
[19] | Hoz L, Romo E, Zeichner-David M, Sanz M, Nu?ez J, et al. (2012) Cementum protein 1 (CEMP1) induces differentiation by human periodontal ligament cells under three-dimensional culture conditions. Cell Biol Int 36: 129–136.
|
[20] | Silverman L, Boskey AL (2004) Diffusion systems for evaluation of biomineralization. Calcif Tissue Int 75: 494–501.
|
[21] | Hunter GK, Goldberg HA (1993) Nucleation of hydroxyapatite by bone sialoprotein. Proc Natl Acad Sci U S A 90: 8562–8565.
|
[22] | Garcia-Ruiz JM (2003) Counter-diffusion methods for macromolecular crystallization. Methods Enzymol 368: 130–154.
|
[23] | Cuisinier FJ, Glaisher RW, Voegel JC, Hutchison JL, Brès EF, et al. (1991) Compositional variations in apatites with respect to preferential ionic extraction. Ultramicroscopy 36: 297–305.
|
[24] | Arzate H, Alvarez M, Aguilar ME, Alvarez O (1998) Human cementum tumor cells have different features from human osteoblastic cells in vitro. J Periodontal Res 33: 249–258.
|
[25] | Huang YC, Simmons C, Kaigler D, Rice KG, Mooney DJ (2005) Bone regeneration in a rat cranial defect with delivery of PEI-condensed plasmid DNA encoding for bone morphogenetic protein-4 (BMP-4). Gene Ther 12: 418–426.
|
[26] | Stancoven BW, Lee J, Dixon DR, McPherson JC 3rd, Bisch FC, et al. (2013) Effect of bone morphogenetic protein-2, demineralized bone matrix and systemic parathyroid hormone (1–34) on local bone formation in a rat calvaria critical-size defect model. J Periodontal Res 48: 243–251.
|
[27] | Nu?ez J, Sanz M, Hoz-Rodríguez L, Zeichner-David M, Arzate H (2010) Human cementoblasts express enamel-associated molecules in vitro and in vivo. J Periodontal Res 45: 809–814.
|
[28] | Suzuki O (2010) Octacalcium phosphate: osteoconductivity and crystal chemistry. Acta Biomater 6: 3379–3387.
|
[29] | Brown WE, Smith JP, Lehr JR, Frazier AW (1962) Crystallographic and chemical relations between octacalcium phosphate and hydroxyapatite. Nature 196: 1050–1055.
|
[30] | Suzuki O, Nakamura M, Miyasaka Y, Kagayama M, Sakurai M (1991) Bone formation on synthetic precursors of hydroxyapatite. Tohoku J Exp Med 164: 37–50.
|
[31] | Kikawa T, Kashimoto O, Imaizumi H, Kokubun S, Suzuki O (2009) Intramembranous bone tissue response to biodegradable octacalcium phosphate implant. Acta Biomater 5: 1756–1766.
|
[32] | Suzuki O, Kamakura S, Katagiri T, Nakamura M, Zhao B, et al. (2006) Bone formation enhanced by implanted octacalcium phosphate involving conversion into Ca-deficient hydroxyapatite. Biomaterials 27: 2671–2681.
|
[33] | Shelton RM, Liu Y, Cooper PR, Gbureck U, German MJ, et al. (2006) Bone marrow cell gene expression and tissue construct assembly using octacalcium phosphate microscaffolds. Biomaterials 27: 2874–2881.
|
[34] | Liu Y, Cooper PR, Barralet JE, Shelton RM (2007) Influence of calcium phosphate crystal assemblies on the proliferation and osteogenic gene expression of rat bone marrow stromal cells. Biomaterials 28: 1393–1403.
|
[35] | Anada T, Kumagai T, Honda Y, Masuda T, Kamijo R, et al. (2008) Dose-dependent osteogenic effect of octacalcium phosphate on mouse bone marrow stromal cells. Tissue Eng Part A 14: 965–978.
|
[36] | Huang Z, Cheng SL, Slatopolsky E (2001) Sustained activation of the extracellular signal-regulated kinase pathway is required for extracellular calcium stimulation of human osteoblast proliferation. J Biol Chem 276: 21351–1358.
|
[37] | Honda Y, Anada T, Kamakura S, Morimoto S, Kuriyagawa T, et al. (2009) The effect of microstructure of octacalcium phosphate on the bone regenerative property. Tissue Eng Part A 15: 1965–1973.
|
[38] | Rohanizadeh R, Swain MV, Mason RS (2008) Gelatin sponges (Gelfoam) as a scaffold for osteoblasts. J Mater Sci Mater Med 19: 1173–1182.
|
[39] | Damien CJ, Parsons JR (1991) Bone graft and bone graft substitutes: a review of current technology and applications. J Appl Biomater 2: 187–208.
|
[40] | Pang EK, Im SU, Kim CS, Choi SH, Chai JK, et al. (2004) Effect of recombinant human bone morphogenetic protein-4 dose on bone formation in a rat calvarial defect model. J Periodontol 75: 1364–1370.
|
[41] | Choi SH, Kim CK, Cho KS, Huh JS, Sorensen RG, et al. (2002) Effect of recombinant human bone morphogenetic protei-2/absorbable collagen sponge (rfBMP-2/ACS) on healing in 3-wall intrabony defects in dogs. J Periodontol 73: 63–72.
|
[42] | King GN, King N, Hughes FJ (1998) Two delivery systema for recombinant human morphogenetic protein-2 on periodontal regeneration in vivo. J Periodontal Res 33: 226–236.
|
[43] | H?m?l?inen KM, M??tt? E, Piirainen H, Marianne Sarkola, V?is?nen A, et al. (1998) Roles of acid/base nature and molecular weight in drug release from matrices of gelfoam and monoisopropyl ester of poly(vinyl methyl ether-maleic anhydride). J Control Release 56: 273–283.
|
[44] | Sela M, Arnon R (1960) Studies on the chemical basis of the antigenicity of proteins. 1. Antigenicity of polypeptidyl gelatins. Biochem J 75: 91–102.
|
[45] | Ponticiello MS, Schinagl RM, Kadiyala S, Barry FP (2000) Gelatin-based resorbable sponge as a carrier matrix for human mesenchymal stem cells in cartilage regeneration therapy. J Biomed Mater Res 52: 246–255.
|
[46] | Liening DA, Lundy L, Silberberg B, Finstuen K (1997) A comparison of the biocompatibility of three absorbable hemostatic agents in the rat middle ear. Otolaryngol Head Neck Surg 116: 454–457.
|
[47] | Kohara H, Tabata Y (2011) Enhancement of ectopic osteoid formation following the dual release of bone morphogenetic protein 2 and Wnt1 inducible signaling pathway protein 1 from gelatin sponges. Biomaterials 32: 5726–5732.
|
[48] | Finn MD, Schow SR, Schneiderman ED (1992) Osseous regeneration in the presence of four common hemostatic agents. J Oral Maxillofac Surg 50: 608–612.
|
[49] | Stanton JS, Salih V, Bentley G, Downes S (1995) The growth of chondrocytes using Gelfoam as a biodegradable scaffold. J Mater Sci Mater Med 6: 739–744.
|
[50] | Gittens SA, Uludag H (2001) Growth factor delivery for bone tissue engineering. J Drug Target 9: 407–429.
|
[51] | Takahashi Y, Yamamoto M, Tabata Y (2005) Osteogenic differentiation of mesenchymal stem cells in biodegradable sponges composed of gelatin and beta-tricalcium phosphate. Biomaterials 26: 3587–3596.
|
[52] | Takahashi Y, Yamamoto M, Tabata Y (2005) Enhanced osteoinduction by controlled release of bone morphogenetic protein-2 from biodegradable sponge composed of gelatin and beta-tricalcium phosphate. Biomaterials 26: 4856–4865.
|
[53] | Seeherman H, Wozney JM (2005) Delivery of bone morphogenetic proteins for orthopedic tissue regeneration. Cytokine Growth Factor Rev 16: 329–345.
|
[54] | Haidar ZS, Hamdy RC, Tabrizian M (2009) Delivery of recombinant bone morphogenetic proteins for bone regeneration and repair. Part A: Current challenges in BMP delivery. Biotechnol Lett 31: 1817–1824.
|
[55] | Krebsbach PH, Gu K, Franceschi RT, Rutherford RB (2000) Gene therapy-directed osteogenesis: BMP-7-transduced human fibroblasts form bone in vivo. Hum Gene Ther 11: 1201–1210.
|
[56] | Whang K, Tsai DC, Nam EK, Aitken M, Sprague SM, et al. (1998) Ectopic bone formation via rhBMP-2 delivery from porous bioabsorbable polymer scaffolds. J Biomed Mater Res 42: 491–499.
|
[57] | Wozney JM, Rosen V (1998) Bone morphogenetic protein and bone morphogenetic protein gene family in bone formation and repair. Clin Orthop 346: 26–37.
|
[58] | Paula-Silva FW, Ghosh A, Arzate H, Kapila S, da Silva LA, et al. (2010) Calcium hydroxide promotes cementogenesis and induces cementoblastic differentiation of mesenchymal periodontal ligament cells in a CEMP1- and ERK-dependent manner. Calcif Tissue Int 87: 144–157.
|
[59] | Alvarez M, Pitaru S, Alvarez O, Reyes J, Arzate H (2003) Anti-cementoblastoma-derived protein antibody partially inhibits mineralization on a cementoblastic cell line. J Struct Biol 143: 1–13.
|