全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Unveiling Current Guanaco Distribution in Chile Based upon Niche Structure of Phylogeographic Lineages: Andean Puna to Subpolar Forests

DOI: 10.1371/journal.pone.0078894

Full-Text   Cite this paper   Add to My Lib

Abstract:

Niche description and differentiation at broad geographic scales have been recent major topics in ecology and evolution. Describing the environmental niche structure of sister taxa with known evolutionary trajectories stands out as a useful exercise in understanding niche requirements. Here we model the environmental niche structure and distribution of the recently resolved phylogeography of guanaco (Lama guanicoe) lineages on the western slope of the southern Andes. Using a maximum entropy framework, field data, and information on climate, topography, human density, and vegetation cover, we identify differences between the two subspecies (L.g.cacsilensis, L.g.guanicoe) and their intermediate-hybrid lineage, that most likely determine the distribution of this species. While aridity seems to be a major factor influencing the distribution at the species-level (annual precipitation <900 mm), we also document important differences in niche specificity for each subspecies, where distribution of Northern lineage is explained mainly by elevation (mean = 3,413 m) and precipitation seasonality (mean = 161 mm), hybrid lineage by annual precipitation (mean = 139 mm), and Southern subspecies by annual precipitation (mean = 553 mm), precipitation seasonality (mean = 21 mm) and grass cover (mean = 8.2%). Among lineages, we detected low levels of niche overlap: I (Similarity Index) = 0.06 and D (Schoener’s Similarity Index) = 0.01; and higher levels when comparing Northern and Southern subspecies with hybrids lineage (I = 0.32-0.10 and D = 0.12-0.03, respectively). This suggests that important ecological and/or evolutionary processes are shaping the niche of guanacos in Chile, producing discrepancies when comparing range distribution at the species-level (81,756 km2) with lineages-level (65,321 km2). The subspecies-specific description of niche structure is provided here based upon detailed spatial distribution of the lineages of guanacos in Chile. Such description provides a scientific tool to further develop large scale plans for habitat conservation and preservation of intraspecific genetic variability for this far ranging South American camelid, which inhabits a diversity of ecoregion types from Andean puna to subpolar forests.

References

[1]  Johnson DH (1980) The comparison of usage and availability measurements for evaluating resource preference. Ecology 61: 65–71 doi:10.2307/1937156.
[2]  Jackson ST, Betancourt JL, Booth RK, Gray ST (2009) Ecology and the Ratchet of Events: Climate Variability, Niche Dimensions, and Species Distributions. Proc Nat Acad Sci USA 106 Suppl: 19685–19692 doi:10.1073/pnas.0901644106.
[3]  Austin MP (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol Modell 157: 101–118 doi:10.1016/S0304-3800(02)00205-3.
[4]  Kearney M, Porter W (2009) Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol Lett 12: 334–350 doi:10.1111/j.1461-0248.2008.01277.x.
[5]  Weaver KF, Anderson T, Guralnick R (2006) Combining phylogenetic and ecological niche modeling approaches to determine distribution and historical biogeography of Black Hills mountain snails (Oreohelicidae). Divers Distrib 12: 756–766 doi:10.1111/j.1472-4642.2006.00289.x.
[6]  Holt RD, Gaines MS (1992) Analysis of Adaptation in Heterogeneous Landscapes: Implications for the Evolution of Fundamental Niches. Evol Ecol 6: 433–447 doi:10.1007/BF02270702.
[7]  Elith J, Leathwick JR (2009) Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annu Rev Ecol Evol Syst 40: 677–697 doi:10.1146/annurev.ecolsys.110308.120159.
[8]  Wake DB, Hadly EA, Ackerly DD (2009) Biogeography, changing climates, and niche evolution. Proc Nat Acad Sci USA 106: 19631–19636 doi:10.1073/pnas.0911097106.
[9]  Lenoir J, Gegout JC, Marquet P a, De Ruffray P, Brisse H, et al.. (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320: 1768–1771. doi : 10.1126/science.1156831.
[10]  Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8: 993–1009 doi:10.1111/j.1461-0248.2005.00792.x.
[11]  Franklin J (2009) Mapping Species Distributions. CambridgeUK: Cambridge University Press. 320 p.
[12]  Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, et al. (2006) Novel methods improve prediction of species distributions from occurrence data. Ecography 29: 129–151 doi:10.1111/j.2006.0906-7590.04596.x.
[13]  Syphard AD, Franklin J (2009) Differences in spatial predictions among species distribution modeling methods vary with species traits and environmental predictors. Ecography 32: 907–918 doi:10.1111/j.1600-0587.2009.05883.x.
[14]  Engler R, Guisan A, Rechsteiner L (2004) An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. J Appl Ecol 41: 263–274 doi:10.1111/j.0021-8901.2004.00881.x.
[15]  Cabeza M, Araújo MB, Wilson RJ, Thomas CD, Cowley MJR, et al. (2004) Combining probabilities of occurrence with spatial reserve design. J Appl Ecol 41: 252–262 doi:10.1111/j.0021-8901.2004.00905.x.
[16]  Rodríguez JP, Brotons L, Bustamante J, Seoane J (2007) The application of predictive modelling of species distribution to biodiversity conservation. Divers Distrib 13: 243–251 doi:10.1111/j.1472-4642.2007.00356.x.
[17]  Mandle L, Warren DL, Hoffmann MH, Peterson T, Schmitt J, et al. (2010) Conclusions about niche expansion in introduced impatiens Walleriana populations depend on method of analysis. PloS ONE 5: e15297 doi:10.1371/journal.pone.0015297.
[18]  González BA, Palma RE, Zapata B, Marín JC (2006) Taxonomic and biogeographic status of guanaco Lama guanicoe (Artiodactyla, Camelidae). Mamm Rev 36: 157–178 doi:10.1111/j.1365-2907.2006.00084.x.
[19]  Franklin W (1982) Biology, ecology and relationship to man of the South American camelids. In: Vol Mares MA, Genoways HH, editors. Mammalian biology in South America. Lab. of Ecol and Univ. of Pittsburgh, Pittsburgh: Vol. Pymatuning Symp. Ecol. Spec. Publ. 6: 457–489.
[20]  Cunazza C (1991) El guanaco, una especie de fauna silvestre con futuro. Santiago, Chile: Corporación Nacional Forestal, Gerencia Técnica. pp37.
[21]  Politis GG, Prates L, Merino ML, Tognelli MT (2011) Distribution parameters of guanaco (Lama guanicoe), pampas deer (Ozotoceros bezoarticus) and marsh deer (Blastoceros dichotomus) in Central Argentina: Archaeological and paleoenvironmental implications. J Archaeol Sci 38: 1405–1416 doi:10.1016/j.jas.2011.01.013.
[22]  Marin JC, Spotorno AE, González BA, Bonacic C, Wheeler JC, et al. (2008) Mitochondrial DNA variation and systematics of the guanaco (Lama guanicoe, ARTIODACTYLA: CAMELIDAE). J Mammal 89: 269–281 doi:10.1644/06-MAMM-A-385R.1.
[23]  Marin JC, González B, Poulin E, Casey CS, Johnson WE (2013) The Influence of the Arid Andean High Plateau on the Phylogeography and Population Genetics of Guanaco (Lama guanicoe) in South America. Mol Ecol 22: 463–482 doi:10.1111/mec.12111.
[24]  Marino A, Baldi R (2008) Vigilance patterns of territorial guanacos (Lama guanicoe): the role of reproductive interests and predation risk. Ethology 114: 413–423 doi:_10.1111/j.1439-0310.2008.01485_1.x.
[25]  Wiens JJ, Graham CH (2005) Niche conservatism: integrating evolution, ecology and conservation biology. Annu Rev Ecol Evol Syst 36: 519–539 doi:10.1146/annurev.ecolsys.36.102803.095431.
[26]  Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 5: 1965–1978 doi:10.1002/joc.1276.
[27]  Rabus B, Eineder M, Roth A, Bamler R (2003) The shuttle radar topography mission – a new class of digital elevation models acquired by spaceborne radar. Int Soc Photogramme 57: 241–262 doi:10.1016/S0924-2716(02)00124-7.
[28]  Huete A, Didan K, Miura T, Rodriguez EP, Gao X, et al. (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83: 195–213 doi:10.1016/S0034-4257(02)00096-2.
[29]  Baltholomé E, Belwald AS (2005) GLC2000: a new approach to global land cover from Earth observation data. Int J Remote Sens 26: 1959–1977 doi:10.1080/01431160412331291297.
[30]  Center for International Earth Science Information Network (2005) Global Rural-Urban Mapping Project (GRUMP). Available: http://sedac.ciesin.columbia.edu/data/se?t/grump-v1-population-density/data-downl?oad Accessed 18 September 2013.
[31]  Phillips SJ, Anderson RP, Schapire RE (2006) Maximun entropy modeling of species geographic distributions. Ecol Model 190: 231–259 doi:10.1016/j.ecolmodel.2005.03.026.
[32]  Elith J, Phillips SJ, Hastie T, Dudík M, En Chee Y, et al. (2011) A Statistical Explanation of MaxEnt for Ecologists. Divers Distrib 17: 43–57 doi:10.1111/j.1472-4642.2010.00725.
[33]  Phillips SJ, Elith J, Graham CH (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl 19: 181–197 doi:10.1890/07-2153.1.
[34]  Jaynes ET (1990) Notes on present status and future prospects. In: Maximum Entropy and Bayesian Methods, W.T. Grandy and L.H. Schick. Kluwer. 1–13.
[35]  Pearce J, Ferrier S (2000) Evaluating the predictive performance of habitat models developed using logistic regression. Ecol Modell 133: 225–245 doi:10.1016/S0304-3800(00)00322-7.
[36]  Harrell FE (2001) Regression modelling strategies. New York: Springer-Verlag. 568 p.
[37]  Morueta-Holme N, Fl?jgaard C, Svenning J-C (2010) Climate change risks and conservation implications for a threatened small-range mammal species. PLoS ONE 5: e10360 doi:10.1371/journal.pone.0010360.
[38]  Nakazato T, Warren DL, Moyle LC (2010) Ecological and Geographic Modes of Species Divergence in Wild Tomatoes. Am J Bot 97: 680–693 doi:10.3732/ajb.0900216.
[39]  Warren DL, Glor RE, Turelli M. 2008. Environmental Niche Equivalency Versus Conservatism: Quantitative Approaches to Niche Evolution. Evolution 62: 2868–83.
[40]  Warren DL, Glor RE, Turelli M (2010) ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 01: 607–611 doi:10.1111/j.1600-0587.2009.06142.x.
[41]  Franklin WL (2011) Family Camelide (Camels). In: Wilson DE, Mittermeier RA, editors. Handbook of the Mammals of the World - Volume 2 - Hoofed Mammals. Barcelona, Spain: Lynx Edicions. 206–246.
[42]  Pedrana J, Bustamante J, Travaini A, Rodriguez A (2010) Factors influencing guanaco distribution in southern Argentine Patagonia and implications for its sustainable use. Biodivers Conserv 19: 3499–3512 doi:10.1007/s10531-010-9910-1.
[43]  Acebes P, Traba J, Malo JE, Ovejero R, Borghi CE (2010) Density and habitat use at different spatial scales of a guanaco population (Lama guanicoe) in the Monte desert of Argentina. Mammalia 74: 57–62 doi:10.1515/mamm.2009.071.
[44]  Baldi B, Lichtenstein G, González B, Funes M, Cuéllar E, et al.. (2008) Lama guanicoe. In: IUCN 2010. IUCN Red List of Threatened Species. Version 2010.1. Available: http://www.iucnredlist.org/apps/redlist/?details/11186/0. Accessed 25 January 2013.
[45]  Holt RD, Gaines MS (1992) Analysis of adaptation in heterogeneous landscapes: Implications for the evolution of fundamental niches. Evol Ecol 6: 433–447 doi:10.1007/BF02270702.
[46]  Levins R (1968) Evolution in Changing Environments: Some Theoretical Explorations. Princeton: Princeton University Press. 123 p.
[47]  Wiens JJ (2004) Speciation and Ecology Revisited: Phylogenetic Niche Conservatism and the origin of species. Evolution 58: 193–197 doi:10.1554/03-447.
[48]  Wellenreuther M, Larson KW, Svensson EI (2012) Climatic niche divergence or conservatism? Environmental niches and range limits in ecologically similar damselflies. Ecology 93: 1353–1366 doi:10.1890/11-1181.1.
[49]  McCormack JE, Zellmer AJ, Knowles LL (2010) Does niche divergence accompany allopatric divergence in Aphelocoma jays as predicted under ecological speciation?: insights from tests with niche models. Evolution 64: 1231–1244 doi:10.1111/j.1558-5646.2009.00900.x.
[50]  Levins R (1968) Evolution in Changing Environments: Some Theoretical Explorations. Princeton: Princeton University Press. 123 p.
[51]  Menégaz AN, Goin FJ, Ortiz Jaureguizar E (1989) Análisis morfológico y morfométrico multivariado de los representantes fósiles y vivientes del género Lama (Artyodactyla, Camelidae). Sus implicancias sistemáticas, biogeográficas, ecológicas, ecológicas y biocronológicas. Ameghiniana 26: 153–172.
[52]  Ochsenius C (1985) Pleniglacial Desertization, Large-Animal Mass Extinction and Pleistocene-Holocene Boundary in South America. Revista de Geografía Norte Grande 47: 35–47.
[53]  Abraham EM, Garleff K, Liebricht H, Regairaz AC, Schaebitz F, et al. (2000) Geomorphology and Paleoecology of the Arid Diagonal in Southern South America. Z Angew Geol 1: 55–61.
[54]  Samaniego H, Marquet PA (2009) Mammal and Butterfly Species Richness in Chile: Taxonomic Covariation and History. Rev Chil Hist Nat 82: 135–151 doi:10.4067/S0716-078X2009000100009.
[55]  Vidiella PE, Armesto JJ, Gutierrez JR (1999) Vegetation changes and sequential flowering after rain in the southern Atacama Desert. J Arid Environ 43: 449–458 doi:10.1006/jare.1999.0565.
[56]  Jaksic FM (2001) Ecological effects of El Ni?o in terrestrial ecosystems of western South America. Ecography 24: 241–250 doi:10.1111/j.1600-0587.2001.tb00196.x.
[57]  Pino M, Chávez-Hoffmeister M, Navarro-Harris X, Labarca R (2013) The late Pleistocene Pilauco site, Osorno, south-central Chile. Quatern Int 299: 3–12 doi:10.1016/j.quaint.2012.05.001.
[58]  Méndez Melgar C (2013) Terminal Pleistocene/early Holocene 14C dates form archaeological sites in Chile: Critical chronological issues for the initial peopling of the region. Quatern Int 301: 60–73 doi:10.1016/j.quaint.2012.04.003.
[59]  Armesto JJ, Manuschevich D, Mora A, Smith-Ramirez C, Rozzi R, et al. (2010) From the Holocene to the Anthropocene: A historical framework for land cover change in southwestern South America in the past 15,000 years. Land Use Policy 27: 148–160 doi:10.1016/j.landusepol.2009.07.006.
[60]  Ceballos G, Ehrlich PR (2002) Mammal Population Losses and the Extinction Crisis. Science 296: 904–907 doi:10.1126/science.1069349.
[61]  Schulz N, Aceituno P, Richter M (2011) Phytogeographic divisions, climate change and plant dieback along the coastal desert of northern Chile. Erdkunde 65: 169–187 doi:10.3112/erdkunde.2011.02.05.
[62]  Samaniego H, Marquet PA (2013) Range structure analysis: unveiling the internal structure of species’ ranges. Theorical Ecolology doi: 10.1007/s12080-013-0177-5.
[63]  Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, et al. (2001) Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51: 933–938 doi:–[];10.1641/0006–3568(2001)051[0933:TEOTWA]2?.0.CO;2.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133