全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Intraguild Predation on the Whitefly Parasitoid Eretmocerus eremicus by the Generalist Predator Geocoris punctipes: A Behavioral Approach

DOI: 10.1371/journal.pone.0080679

Full-Text   Cite this paper   Add to My Lib

Abstract:

Intraguild predation (IGP) takes place when natural enemies that use similar resources attack each other. The impact of IGP on biological control can be significant if the survival of natural enemy species is disrupted. In the present study, we assessed whether Geocoris punctipes (Hemiptera: Lygaeidae) engages in IGP on Eretmocerus eremicus (Hymenoptera: Aphelinidae) while developing on whitefly nymphs of Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). In choice and non-choice tests, we exposed G. punctipes to parasitized and non-parasitized whitefly nymphs. We found that G. punctipes does practice IGP on E. eremicus. However, choice tests assessing G. punctipes consumption revealed a significant preference for non-parasitized T. vaporariorum nymphs. Subsequently, we investigated whether E. eremicus females modify their foraging behavior when exposed to conditions involving IGP risk. To assess this, we analyzed wasp foraging behavior under the following treatments: i) whitefly nymphs only (control = C), ii) whitefly nymphs previously exposed to a predator ( = PEP) and, iii) whitefly nymphs and presence of a predator ( = PP). In non-choice tests we found that E. eremicus did not significantly modify its number of attacks, attack duration, oviposition duration, or behavior sequences. However, E. eremicus oviposited significantly more eggs in the PEP treatment. In the PP treatment, G. punctipes also preyed upon adult E. eremicus wasps, significantly reducing their number of ovipositions and residence time. When the wasps were studied under choice tests, in which they were exposed simultaneously to all three treatments, the number of attacks and frequency of selection were similar under all treatments. These results indicate that under IGP risk, E. eremicus maintains several behavioral traits, but can also increase its number of ovipositions in the presence of IG-predator cues. We discuss these findings in the context of population dynamics and biological control.

References

[1]  Polis GA, Myers CA, Holt RD (1989) The ecology and evolution of intraguild predation: Potential competitors that eat each other. Annu Rev Ecol Evol Syst 20: 297–330.
[2]  Snyder WE, Ives AR (2008) Behavior influences whether intra-guild predation disrupts hervibore suppression by parasitoids. In: Wajenberg E, Bernstein C, Van Alphen J, editors. Behavioral ecology of insect parasitoids. Blackwell Pub, Malden, MA, USA, pp. 71–91.
[3]  Gagnon AE, Heimpel GE, Brodeur J (2011) The ubiquity of intraguild predation among predatory arthropods. PLoS ONE 6: e28061.
[4]  Lucas E, Rosenheim JA (2011) Influence of extraguild prey density on intraguils predation by heteropteran predators: A review of the evidence and a case of study. Biol Control 59: 61–67.
[5]  Lucas E, Alomar O (2001) Macrolophus caliginosus (Wagner) as an intreguild prey for the zoophytophagous Dicyphus tamananii Wagner (Heteroptera: Miridae). Biol Control 20: 147–152.
[6]  Lucas E, Alomar O (2002) Impact of Macrolophus caliginosus presence on damage production by Dicyphus tamaninii (Heteroptera: Miridae) on tomato fruits. J Econ Entomol 95: 1123–1129.
[7]  Meyh?fer R, Klug T (2002) Intraguild predation on the aphid parasitoid Lysiphlebus fabarum (Marshall) (Hymenoptera: Aphidiidae): mortality risks and behavioral decisions made under the threats of predation. Biol Control 25: 239–248.
[8]  Snyder WE, Ives AR (2001) Generalist predators disrupt biological control by specialist parasitoid. Ecology 82: 705–716.
[9]  Naranjo SE (2007) Intraguild predation on Eretmocerus sp. nr. emiratus, a parasitoid of Bemisia tabaci, by three generalist predators with implications for estimating the level and impact of parasitism. Bio Sci Tech 17: 605–622.
[10]  Martinou AF, Raymond B, Milonas PG, Wright DJ (2010) Impact of intraguild predation on parasitoid foraging behavior. Ecol Entomol 35: 183–189.
[11]  Kaneko S (2007) Predator and parasitoid attacking ant-attended aphids: effects of predator presence and attending ant species on emerging parasitoid numbers. Ecol Res 22: 451–458.
[12]  Chailleux A, Bearez P, Pizzol J, Amiens-Desneux E, Ramirez-Romero R, et al. (2013) Potential for combined use of parasitoids and generalist predators for biological control of the key invasive tomato pest, Tuta absoluta. J Pest Sci 86: 533–541.
[13]  Walzer A, Schausberger P (2011) Threat-sensitive anti-intraguild predation behavior: maternal strategies to reduce offspring predation risk in mites. Animal Behav 81: 177–184.
[14]  Polis GA, Holt RD (1992) Intraguild predation: the dynamics of complex trophic interactions. Trends Ecol Evol 7: 151–155.
[15]  Finke DL, Denno RF (2003) Intra-guild predation relaxes natural enemy impacts on herbivore populations. Ecol Entomol 28: 67–73.
[16]  Janssen AM, HilleRisLambers MR, De Roos AM, Pallini A, Sabelis MW (2006) Intraguild predation usually does not disrupt biological control. In: Brodeur J, Boivin G, editors. Trophic and guild interactions in biological control. Dordrecht, The Netherlands: Springer. pp. 21–44.
[17]  Herrick NJ, Reitz SR, Carpenter JE, O'Brien CW (2008) Predation by Podisus maculiventris (Hemiptera: Pentatomidae) on Plutella xylostella (Lepidoptera: Plutellidae) larvae parasitized by Cotesia plutellae (Hymenoptera: Braconidae) and its impact on cabbage. Biol Control 45: 386–395.
[18]  Colfer RG, Rosenheim JA (2001) Predation on immature parasitoids and its impact on aphid suppression. Oecologia 126: 292–304.
[19]  Rosenheim JA, Harmon JP (2006) The influence of intraguild predation on the suppression of a shared prey population: An empirical reassessment. In: Brodeur J, Boivin G, editors. Trophic and guild interactions in biological control. New York, USA: Springer. pp. 1–20.
[20]  Meisner M, Harmon JP, Harvey CT, Ives AR (2011) Intraguild predation on the parasitoid Aphidius ervi by the generalist predator Harmonia axyridis: the threat and its avoidance. Entomol Exp Appl 138: 193–201.
[21]  Taylor AJ, Muller CB, Godfray HCJ (1998) Effect of aphid predators on oviposition behavior of aphid parasitoids. J Insect Behav 11: 297–302.
[22]  Nakashima Y, Senoo N (2003) Avoidance of ladybird trails by an aphid parasitoid Aphidius ervi: active period and effects of prior oviposition experience. Entomol Exp Appl 109: 163–166.
[23]  Nakashima Y, Birkett MA, Pye BJ, Pickett JA, Powell W (2004) The role of semiochemicals in the avoidance of the seven-spot ladybird, Coccinella septempunctata, by the aphid parasitoid Aphidius ervi. J Chem Ecol 30: 1103–1116.
[24]  Dicke M, Grostal P (2001) Chemical detection of natural enemies by arthropods: An ecological perspective. Annu Rev Ecol Evol Syst 32: 1–23.
[25]  Choh Y, Van der Hammen T, Sabelis MW, Janssen A (2010) Cues of intraguild predators affect the distribution of intraguild prey. Oecologia 163: 335–340.
[26]  Heimpel GE, Rosenheim JA, Magel M (1997) Predation on adult Aphytis parasitoids in the field. Oecologia 110: 346–352.
[27]  Jong-Kwan K, Jung-Joon P, Heungsun P, Kijong C (2001) Unbiased estimation of greenhouse whitefly, Trialeurodes vaporariorum, mean density using yellow sticky trap in cherry tomato greenhouses. Entomol Exp Appl 100: 235–243.
[28]  Kennedy GG (2003) Tomato, pests, parasitoids, and predators: Tritrophic interactions involving the genus Lycopersicon. Annu Rev Entomol 48: 51–72.
[29]  Angeles-López YI, Martínez-Gallardo NA, Ramirez-Romero R, López MG, Sánchez-Hernández C, et al. (2012) Cross-kingdom effects of plant-plant signaling via volatile organic compounds emitted by tomato (Solanum lycopersicum) plants infested by the greenhouse whitefly (Trialeurodes vaporariorum). J Chem Ecol 38: 1376–1386.
[30]  Ortega-Arenas LD (2008) Moscas blancas, temas selectos sobre su manejo. Mexico DF: MundiPrensa. 120 p.
[31]  Byrne DN, Bellows TS (1991) Whitefly biology. Annu Rev Entomol 36: 431–457.
[32]  Stansly PA, Naranjo SE (2010) Bemisia: Bionomics and management of global pest. New YorkUSA: Springer. 540 p.
[33]  Wintermantel AM (2004) Emergence of greenhouse whitefly (Trialeurodes vaporariorum) transmitted criniviruses as threats to vegetable and fruit production in North America. Am Phytopathological Soc Feature Story: 1–13.
[34]  Gerling D, Alomar O, Arnó J (2001) Biological control of Bemisia tabaci using predators and parasitoids. Crop Prot 20: 779–799.
[35]  Brown JK, Bird J (1992) Whitefly-transmitted geminiviruses and associated disorders in the Americas and Caribbean Basin. Plant Dis 76: 220–225.
[36]  Readio J, Sweet MH (1982) A review of the Geocorinae of the United States of the 100th Meridian (Hemiptera: Lygaeidae). Misc Pub Entomol Soc Am 12: 1–91.
[37]  Mead FW (2011) Big-eyed bugs, Geocoris spp. (Insecta: Hemiptera: Lygaeidae). University of Florida, IFAS Extension. Document: EENY-252. 6 p.
[38]  Champlain RA, Sholdt LL (1967) Life history of Geocoris punctipes (Hemiptera:Lygaeidae) in the Laboratory. Ann Entomol Soc Am 60: 881–883.
[39]  Naranjo SE (1987) Observations on Geocoris punctipes (Hemiptera: Lygaeidae) oviposition site preferences. Fla Entomol 70: 173–175.
[40]  Colfer RG, Rosenheim JA, Godfrey LD (2000) The evaluation of biological control of spider mites. Proc Beltwide Cotton Conf 2: 1151–1157.
[41]  Cohen AC, Byrne DN (1992) Geocoris punctipes as a predator of Bemisia tabaci: a laboratory evaluation. Entomol Exp Appl 64: 195–202.
[42]  Hagler JR, Charles GJ, Rufus I, Scott AM (2004) Foraging behavior and prey interactions by guild of predators on various lifestages of Bemisia tabaci. J Insect Sci 4: 1–13.
[43]  Pendleton ND (2002) Development and impact of Geocoris punctipes (Say) (Hemiptera:Lygaeidae) on selected pests of greenhouse ornamentals. Master Thesis of Science. University of Tennessee, Knoxville. 89 p.
[44]  Dunbar DM (1972) Notes on the mating behavior of Geocoris punctipes (Hemiptera: Lygaeidae). Ann Entomol Soc Am 65: 764–765.
[45]  Rose M, Zolnerowich G (1997) Eretmocerus haldeman (Hymenoptera: Aphelinidae) in the United States with descriptions of new species attacking Bemisia tabaci complex (Homoptera: Aleyrodidae). Proc Entomol Soc Wash 99: 1–27.
[46]  Gould J, Hoelmer K, Goolsby J (2008) Classical biological control of Bemisia tabaci in the United States- A review of interagency research and implementation. New YorkUSA: Springer. 343 p.
[47]  Headrick DH, Bellows JrTS, Perring TM (1996) Behaviors of female Eretmocerus sp. nr. californicus (Hymenoptera: Aphelinidae) attacking Bemisia argentifolii (Homoptera: Aleyrodidae) on cotton, Gossypium hirsutum, (Malavaceae) and melon, Cucumis melo (Cucurbitacea). Biol Control 6: 64–75.
[48]  van Lenteren JC (2003) Commercial availability of biological control agents. In: van Lenteren JC, editor. Quality control and production of biological control agents, theory and testing procedures. Wallingford, UK: CABI Pub. pp. 167–179.
[49]  Ardeh MJ (2004) Whitefly control potential of Eretmocerus parasitoids with different reproductive models. PhD Thesis. Wageningen University. 106 pp.
[50]  Bellamy DE, Asplen MK, Byrne DN (2004) Impact of Eretmocerus eremicus (Hymenoptera: Aphelinidae) on open-field Bemisia tabaci (Hemíptera: Aleyrodidae) populations. Biol Control 29: 227–234.
[51]  Parrelta MP, Bellows TS, Gill RJ, Brown JK, Heinz KM (1992) Sweetpotato whitefly: prospects for biological control. Cal Agr 46: 25–26.
[52]  Naranjo SE, Ellsworth PC, Hagler JR (2004) Conservation of natural enemies in cotton: role of insect growth regulators in management of Bemisi tabaci. Biol Control 30: 52–72.
[53]  Cortés ME, Pérez MJ (2013) Manejo integrado de mosquita blanca. Curso de Plagas y Enfermedades de Hortalizas. Memoria de Capacitación. Fundación Produce Sinaloa A.C. Mexico. 135 p.
[54]  Rosenheim JA (2005) Intraguild predation of Orius tristicolor by Geocoris spp. and the paradox of irruptive spider mite dynamics in California cotton. Biol Control 32: 172–179.
[55]  Bilu E, Coll M (2007) The importance of intraguild interactions to the combined effect of a parasitoid and a predator on aphid population suppression. BioControl 52: 753–763.
[56]  Rosenheim JA, Kaya HK, Ehler LE, Marois JJ, Jaffee BA (1995) Intraguild predation among biological control agents: theory and evidence. Biol Control 5: 303–335.
[57]  Asplen MK, Bellamy DE, Byrne DN (2001) Eggs of Eretmocerus eremicus, a whitefly parasitoid. Department of Entomology, The University of Arizona, Vegetable Report pp 1–3.
[58]  Cohen AC (1985) Simple method for rearing the insect predator Geocoris punctipes (Heteroptera: Lygaeidae) on a meat diet. J Econ Entomol 78: 1173–1175.
[59]  Tillman PG, Mullinix BG (2003) Effect of prey species on plant feeding behavior by the big-eyed bug, Geocoris punctipes (Say) (Heteroptera: Geocoridae), on cotton. Environ Entomol 32: 1399–1403.
[60]  Dunbar DM, Bacon OG (1972) Feeding, development and reproduction of Geocoris punctipes (Heteroptera: Lygaeydae) on eight diets. Ann Entomol Soc Am 65: 892–895.
[61]  Welch BL (1938) The significance of the difference between two means when the population variances are unequal. Biometrika 29: 350–362.
[62]  Ottoni EB (2000) EthoLog 2.2 - a tool for the transcription and timing of behavior observation sessions. Behav Res Meth Instrum Comput 32: 446–449.
[63]  Ardeh MJ, De Jong PW, van Lenteren JC (2005) Selection of Bemisia nymphal stages for oviposition or feeding, and host-handling times of arrhenotokous and thelytokous Eretmocerus mundus and arrhenotokous Eretmocerus eremicus. BioControl 50: 449–463.
[64]  Ardeh MJ, De Jong PW, Loomans AJM, van Lenteren JC (2004) Inter-and Intraespecific effects of volatile and nonvolatile sex pheromones on males, mating behavior, and hybridization in Eretmocerus mundus and E. eremicus (Hymenoptera: Aphelinidae). J Insect Behav 17: 745–759.
[65]  Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. New YorkUSA: Springer. 574 p.
[66]  Crawley MJ (2007) The R book. West SussexUK: John Wiley and Sons, Ltd. 942 p.
[67]  Ramirez-Romero R, Sivinski J, Copeland CS, Aluja M (2012) Are individuals from thelytokous and arrhenotokous populations equally adept as biocontrol agents? Orientation and host searching behavior of a fruit fly parasitoid. Biocontrol 57: 427–440.
[68]  Sokal RR, Rohlf J (1995) Biometry. New YorkUSA: Freeman and Co. 937 p.
[69]  Joyce AL, Bellows TS, Headrick DH (1999) Reproductive biology and search behavior of Amitus bennetti (Hymenoptera: Platygasteridae), a parasitoid of Bemisia argentifolii (Homoptera: Aleyrodidae). Environ Entomol 28: 282–720.
[70]  Altamann J (1974) Observational study of behavior: sampling methods. Behavior 49: 227–265.
[71]  Batchelor TP, Hardy ICW, Barrera JF, Pérez-Lachaud G (2005) Insect gladiators II: Competitive interactions within and between bethylid parasitoid species of the coffee berry borer, Hypothenemus hampei (Coleoptera: Scolytidae). Biol Control 33: 194–202.
[72]  Zar JH (1999) Biostatistical analysis. New JerseyUSA: Prentice Hall International. 663 p.
[73]  Team R (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
[74]  Al-Zyoud F, Sengoca C (2004) Prey consumption preferences of Serangium parcesetosum Sicard (Col., Coccinelidae) for different prey stages, species and parasitized prey. J Pest Sci 77: 197–204.
[75]  Hoelmer KA, Osborne LS, Yokomi RK (1994) Interactions of the whitefly predator Delphastus pusillus (Coleoptera: Coccinellidae) with parasitized sweetpotato whitefly (Homoptera: Aleyrodidae). Environ Entomol 23: 136–139.
[76]  Chen PS (1966) Amino acid and protein metabolism in insect development. Adv Insect Physiol 3: 53–132.
[77]  Gelman DB, Blackburn MB, Hu JS (2002) Timing and ecdysteroid regulation of the molt in last instar greenhouse whiteflies (Trialeurodes vaporariorum). J Insect Physiol 48: 63–73.
[78]  Williamson CE (1980) The predatory behavior of Mesocyclops edax: Predator preferences, prey defenses, and starvation-induced changes. Limnol Oceanogr 25: 903–909.
[79]  Hoy MA, Smilanick JM (1981) Non-random prey location by the phytoseiid predator Metaseiulus occidentalis differential responses to several spider mite species. Entomol Exp Appl 29: 241–253.
[80]  Roger C, Coderre D, Boivin G (2000) Differential prey utilization by the generalist predator Coleomegilla maculata lengi according to prey size and species. Entomol Exp Appl 94: 3–13.
[81]  Holt RD, Polis GA (1997) A theoretical framework for intraguild predation. Am Nat 149: 745–764.
[82]  Abrams P, Matsuda H (1993) Effects of adaptive predatory and anti-predator behavior in a two-prey-one-predator system. Evol Ecol 7: 312–326.
[83]  Raymond B, Darby AC, Douglas AE (2000) Intraguild predators and the spatial distribution of parasitoid. Oecologia 124: 367–372.
[84]  Marques AA, McElfresh JS, Millar JG (2000) Female-produced sex pheromone of the predatory bug Geocoris punctipes. J Chem Ecol 26: 2843–2855.
[85]  Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool 68: 619–640.
[86]  Magnhagen C (1991) Predation risk as a cost of reproduction. Trends Ecol Evol 6: 83–186.
[87]  Reznick D, Butler IV MJ, Rodd H (2001) Life history evolution in guppies. VII. The comparative ecology of high and low predation environments. Am Nat 157: 126–140.
[88]  Bilu E, Hopper KR, Coll M (2006) Host choice by Aphidius colemani: effects of plants, plant-aphid combinations and the presence of intra-guild predators. Ecol Entomol 31: 331–336.
[89]  López-Arroyo JI, Cortez-Mondaca E, Arredondo-Bernal HC, Ramírez-Delgado M, Loera-Gallardo J, et al.. (2007) Uso de depredadores para el control biológico de plagas en México. In: Rodríguez-del-Bosque LA, Arredondo-Bernal HC, editors. Teoría y aplicación del control biológico.México: Sociedad Mexicana de Control Biológico. pp. 90–105.
[90]  Fréchette B, Rojo S, Alomar O, Lucas E (2007) Intraguild predation between syrphids and mirids: who is the prey? Who is the predator? Biocontrol 52: 175–191.
[91]  Seelmann L, Auer A, Hoffmann D, Schausberger P (2007) Leaf pubescence mediates intreguild predation between predatory mites. Oikos 116: 807–817.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133