全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Genome Variations Associated with Viral Susceptibility and Calcification in Emiliania huxleyi

DOI: 10.1371/journal.pone.0080684

Full-Text   Cite this paper   Add to My Lib

Abstract:

Emiliania huxleyi, a key player in the global carbon cycle is one of the best studied coccolithophores with respect to biogeochemical cycles, climatology, and host-virus interactions. Strains of E. huxleyi show phenotypic plasticity regarding growth behaviour, light-response, calcification, acidification, and virus susceptibility. This phenomenon is likely a consequence of genomic differences, or transcriptomic responses, to environmental conditions or threats such as viral infections. We used an E. huxleyi genome microarray based on the sequenced strain CCMP1516 (reference strain) to perform comparative genomic hybridizations (CGH) of 16 E. huxleyi strains of different geographic origin. We investigated the genomic diversity and plasticity and focused on the identification of genes related to virus susceptibility and coccolith production (calcification). Among the tested 31940 gene models a core genome of 14628 genes was identified by hybridization among 16 E. huxleyi strains. 224 probes were characterized as specific for the reference strain CCMP1516. Compared to the sequenced E. huxleyi strain CCMP1516 variation in gene content of up to 30 percent among strains was observed. Comparison of core and non-core transcripts sets in terms of annotated functions reveals a broad, almost equal functional coverage over all KOG-categories of both transcript sets within the whole annotated genome. Within the variable (non-core) genome we identified genes associated with virus susceptibility and calcification. Genes associated with virus susceptibility include a Bax inhibitor-1 protein, three LRR receptor-like protein kinases, and mitogen-activated protein kinase. Our list of transcripts associated with coccolith production will stimulate further research, e.g. by genetic manipulation. In particular, the V-type proton ATPase 16 kDa proteolipid subunit is proposed to be a plausible target gene for further calcification studies.

References

[1]  Balch WM, Holligan PM, Kilpatrick KA (1992) Calcification, photosynthesis and growth of the bloom-forming coccolithophore, Emiliania huxleyi. Continental Shelf Research 12: 1353–1374.
[2]  Brown CW, Yoder JA (1993) Blooms of Emiliania huxleyi (Prymnesiophyceae) in surface waters of the Nova Scotian Shelf and the Great Bank. Journal of Plankton Research 15: 1429–1438.
[3]  Winter A, Jordan RW, Roth PH (1994) Biogeography of living coccolithophores in ocean waters. In: Winter A, Siesser WG, editors. Coccolithophores. Cambridge: Cambridge University Press. pp. 161–177.
[4]  Holligan PM, Fernández E, Aiken J, Balch WM, Boyd P, et al. (1993) A biogeochemical study of the coccolithophore, Emiliania huxleyi, in the North Atlantic. Global Biogeochemical Cycles 7: 879–900.
[5]  Sukhanova IN, Flint MV (1998) Anomalous blooming of coccolithophorids over the Eastern Bering Sea Shelf. Oceanology 38: 502–505.
[6]  Holligan PM, Viollier M, Harbour DS, Camus P, Champagne-Philippe M (1983) Satellite and ship studies of coccolithophore production along a continental shelf edge. Nature 304: 339–342.
[7]  Balch WM, Holligan PM, Ackleson SG, Voss KJ (1991) Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine. Limnology and Oceanography 36: 629–643.
[8]  Malin G, Liss PS, Turner SM (1994) Dimethyl sulphide: production and atmospheric consequences. In: Green JC, Leadbeater BSC, editors. The Haptophyte Algae. Oxford: Clarendon Press. pp. 303–320.
[9]  Westbroek P, Brown CW, Bleijswijk J, Brownlee C, Brummer GJ, et al. (1993) A model system approach to biological climate forcing. The example of Emiliania huxleyi. Global and Planetary Change 8: 27–46.
[10]  Westbroek P, Hinte JE, Brummer G-J, Veldhuis M, Brownlee C, et al.. (1994) Emiliania huxleyi as a key to biosphere-geosphere interactions. In: Green JC, Leadbeater BSC, editors. The Haptophyte Algae. Oxford: Clarendon Press. pp. 321–334.
[11]  Nguyen B, Bowers RM, Wahlund TM, Read BA (2005) Suppressive subtractive hybridization of and differences in gene expression content of calcifying and noncalcifying cultures of Emiliania huxleyi strain 1516. Applied and Environmental Microbiology 71: 2564–2575.
[12]  Jacquet S, Heldal M, Iglesias-Rodriguez D, Larsen A, Wilson W, et al. (2002) Flow cytometric analysis of an Emiliana huxleyi bloom terminated by viral infection. Aquatic Microbial Ecology 27: 111–124.
[13]  Bratbak G, Egge JK, Heldal M (1993) Viral mortality of the marine alga Emiliania huxleyi (Haptophyceae) and termination of algal blooms. Marine Ecology Progress Series 93: 39–48.
[14]  Castberg T, Thyrhaug R, Larsen A, Sandaa R-A, Heldal M, et al. (2002) Isolation and characterization of a virus that infects Emiliania huxleyi (Haptophyta). Journal of Phycology 38: 767–774.
[15]  Wilson WH, Tarran GA, Schroeder D, Cox M, Oke J, et al. (2002) Isolation of viruses responsible for the demise of an Emiliania huxleyi bloom in the English Channel. J Mar Biolog Assoc UK 82: 369–377.
[16]  Schroeder DC, Oke J, Malin G, Wilson WH (2002) Coccolithovirus (Phycodnaviridae): Characterisation of a new large dsDNA algal virus that infects Emiliana huxleyi. Archives of Virology 147: 1685–1698.
[17]  Allen MJ, Schroeder DC, Wilson WH (2006) Preliminary characterisation of repeat families in the genome of EhV-86, a giant algal virus that infects the marine microalga Emiliania huxleyi. Archives of Virology 151: 525–535.
[18]  Allen MJ, Martinez-Martinez J, Schroeder DC, Somerfield PJ, Wilson WH (2007) Use of microarrays to assess viral diversity: from genotype to phenotype. Environmental Microbiology 9: 971–982.
[19]  Allen MJ, Schroeder DC, Holden MTG, Wilson WH (2006) Evolutionary History of the Coccolithoviridae. Molecular Biology and Evolution 23: 86–92.
[20]  Wilson WH, Schroeder DC, Allen MJ, Holden MTG, Parkhill J, et al. (2005) Complete Genome Sequence and Lytic Phase Transcription Profile of a Coccolithovirus. Science 309: 1090–1092.
[21]  Schroeder DC, Oke J, Hall M, Malin G, Wilson WH (2003) Virus succession observed during an Emiliania huxleyi bloom. Applied and Environmental Microbiology 69: 2484–2490.
[22]  Martinéz JM, Schroeder DC, Larsen A, Bratbak G, Wilson WH (2007) Molecular Dynamics of Emiliania huxleyi and Cooccurring Viruses during Two Separate Mesocosm Studies. Applied and Environmental Microbiology 73: 554–562.
[23]  Vardi A, Van Mooy BAS, Fredricks HF, Popendorf KJ, Ossolinski JE, et al. (2009) Viral glycosphingolipids induce lytic infection and cell death in marine phytoplankton. Science 326: 861–865.
[24]  Bidle KD, Haramaty L, Barcelos e Ramos J, Falkowski P (2007) Viral activation and recruitment of metacaspases in the unicellular coccolithophore, Emiliania huxleyi. Proceedings of the National Academy of Sciences 104: 6049–6054.
[25]  Bidle KD, Vardi A (2011) A chemical arms race at sea mediates algal host-virus interactions. Current Opinion in Microbiology 14: 449–457.
[26]  Medlin LK, Barker GLA, Campbell L, Green JC, Hayes PK, et al. (1996) Genetic characterisation of Emiliania huxleyi (Haptophyta). Journal of Marine Systems 9: 13–31.
[27]  Iglesias-Rodriguez MD, Saez AG, Groben R, Edwards KJ, Batley J, et al. (2002) Polymorphic microsatellite loci in global populations of the marine coccolithophorid Emiliania huxleyi. Molecular Ecology Notes 2: 495–497.
[28]  Hagino K, Bendif EM, Young JR, Kogame K, Probert I, et al. (2011) New evidence for morphological and genetic variation in the cosmopolitan coccolithophore Emiliania huxleyi (Prymnesiophyceae) from the cox1b-atp4 genes. Journal of Phycology 47: 1164–1176.
[29]  Cook SS, Whittock L, Wright SW, Hallegraeff GM (2011) Photosynthetic pigment and genetic differences between two southern ocean morphotypes of Emiliania huxleyi (Haptophyta). Journal of Phycology 47: 615–626.
[30]  Thierstein HR, Geitzenauer KR, Molfino B, Shackleton NJ (1977) Global synchronicity of late Quarternary coccolith datum levels: Validation by oxygen isotopes. Geology 5: 400–404.
[31]  Bradshaw AD (1965) Evolutionary significance of phenotypic plasticity in plants. Adv Genet 13: 115–155.
[32]  Miner B, Sultan S, Morgan S, Padilla D, Relyea R (2005) Ecological consequences of phenotypic plasticity. Trends in Ecology & Evolution 20: 685–692.
[33]  Bidle KD, Kwityn CJ (2012) Assessing the role of caspase activity and metacaspase expression on viral susceptibility of the coccolithophore, Emiliania huxleyi (Haptophyta). Journal of Phycology 48: 1079–1089.
[34]  Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, et al. (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: Implications for the microbial “pan-genome”. PNAS 102: 13950–13955.
[35]  Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R (2005) The microbial pan-genome. Current Opinion in Genetics & Development 15: 589–594.
[36]  Rasmussen TB, Danielsen M, Valina O, Garrigues C, Johansen E, et al. (2008) Streptococcus thermophilus Core Genome: Comparative Genome Hybridization Study of 47 Strains. Appl Environ Microbiol 74: 4703–4710.
[37]  Reno ML, Held NL, Fields CJ, Burke PV, Whitaker RJ (2009) Biogeography of the Sulfolobus islandicus pan-genome. Proceedings of the National Academy of Sciences 106: 8605–8610.
[38]  Lefébure T, Stanhope MJ (2007) Evolution of the core and pan-genome of Streptococcus: positive selection, recombination, and genome composition. Genome Biology 8: R71.
[39]  Watanabe T, Murata Y, Oka S, Iwahashi H (2004) A new approach to species determination for yeast strains: DNA microarray-based comparative genomic hybridization using a yeast DNA microarray with 6000 genes. Yeast 21: 351–365.
[40]  Riley M, Serres MH (2000) Interim report on genomics of Escherichia coli. Annual Review of Microbiology 54: 341–411.
[41]  Pearson BM, Pin C, Wright J, I'Anson K, Humphrey T, et al. (2003) Comparative genome analysis of Campylobacter jejuni using whole genome DNA microarrays. FEBS Letters 554: 224–230.
[42]  Read BA, Kegel J, Klute MJ, Kuo A, Lefebvre SC, et al. (2013) Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature 499: 209–213.
[43]  Kim CC, Joyce EA, Chan K, Falkow S (2002) Improved analytical methods for microarray-based genome-composition analysis. Genome Biology 3: 1–17.
[44]  Fukiya S, Mizoguchi H, Tobe T, Mori H (2004) Extensive Genomic Diversity in Pathogenic Escherichia coli and Shigella Strains Revealed by Comparative Genomic Hybridization Microarray. Journal of Bacteriology 186: 3911–3921.
[45]  Earl AM, Losick R, Kolter R (2007) Bacillus subtilis Genome Diversity. J Bacteriol 189: 1163–1170.
[46]  Keymer DP, Miller MC (2007) Schoolnik GK, Boehm AB (2007) Genomic and Phenotypic Diversity of Coastal Vibrio cholerae Strains Is Linked to Environmental Factors. Applied and Environmental Microbiology 73: 3705–3714.
[47]  Dittami SM, Proux C, Rousvoal S, Peters AF, Cock JM, et al. (2011) Microarray estimation of genomic inter-strain variability in the genus Ectocarpus (Phaeophyceae). BMC Molecular Biology 12: 2.
[48]  Lakeman MB, von Dassow P, Cattolico RA (2009) The strain concept in phytoplankton ecology. Harmful Algae 8: 746–758.
[49]  Langer G, Nehrke G, Probert I, Ly J, Ziveri P (2009) Strain-specific responses of Emiliania huxleyi to changing seawater carbonate chemistry. Biogeosciences 6: 2637–2646.
[50]  Hoppe CJM, Langer G, Rost B (2011) Emiliania huxleyi shows identical responses to elevated pCO2 in TA and DIC manipulations. Journal of Experimental Marine Biology and Ecology 406: 54–62.
[51]  Thyrhaug R, Larsen A, Brussaard CPD, Bratbak G (2002) Cell cycle dependent virus production in marine phytoplankton. Journal of Phycology 38: 338–343.
[52]  Evans C, Malin G, Mills GP, Wilson WH (2006) Viral infection of Emiliania huxleyi (Prymnesiophyceae) leads to elevated production of reactive oxygen species. Journal of Phycology 42: 1040–1047.
[53]  Evans C (2007) The relative significance of viral lysis and microzooplankton grazing as pathways of dimethylsulfoniopropionate (DMSP) cleavage: An Emiliania huxleyi culture study. Limnology and Oceanography 52: 1036–1045.
[54]  Hückelhoven R (2004) BAX Inhibitor-1, an ancient cell death suppressor in animals and plants with prokaryotic relatives. Apoptosis 9: 299–307.
[55]  Hückelhoven R, Dechert C, Kogel K-H (2003) From the Cover: Overexpression of barley BAX inhibitor 1 induces breakdown of mlo-mediated penetration resistance to Blumeria graminis. PNAS 100: 5555–5560.
[56]  Cacas J-L (2010) Devil inside: does plant programmed cell death involve the endomembrane system? Plant, Cell & Environment 33: 1453–1473.
[57]  Eichmann R, Bischof M, Weis C, Shaw J, Lacomme C, et al. (2010) BAX INHIBITOR-1 Is Required for Full Susceptibility of Barley to Powdery Mildew. Molecular Plant-Microbe Interactions 23: 1217–1227.
[58]  Jones DA, Jones JDG (1997) The Role of Leucine-Rich Repeat Proteins in Plant Defences. Advances in Botanical Research 24: 89–167.
[59]  Ellis J, Dodds P, Pryor T (2000) Structure, function and evolution of plant disease resistance genes. Current Opinion in Plant Biology 3: 278–284.
[60]  Marchant D, Singhera GK, Utokaparch S, Hackett TL, Boyd JH, et al. (2010) Toll-like receptor 4-mediated activation of p38 mitogen-activated protein kinase is a determinant of respiratory virus entry and tropism. Journal of Virology 84: 11359–11373.
[61]  Compton T (2004) Receptors and immune sensors: the complex entry path of human cytomegalovirus. Trends in Cell Biology 14: 5–8.
[62]  Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, et al. (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22: 153–183.
[63]  Andrade AA, Silva PN, Pereira AC, De Sousa LP, Ferreira PC, et al. (2004) The vaccinia virus-stimulated mitogen-activated protein kinase (MAPK) pathway is required for virus multiplication. The Biochemical Journal 381: 437–446.
[64]  Mudhakir D, Harashima H (2009) Learning from the Viral Journey: How to Enter Cells and How to Overcome Intracellular Barriers to Reach the Nucleus. 11: 65–77.
[65]  Norkin LC (1995) Virus receptors: implications for pathogenesis and the design of antiviral agents. Clin Microbiol Rev 8: 293–315.
[66]  Baranowski E, Ruiz-Jarabo CM, Domingo E (2001) Evolution of Cell Recognition by Viruses. Science 292: 1102–1105.
[67]  Ejrnaes M, Filippi CM, Martinic MM, Ling EM, Togher LM, et al.. (2006) Resolution of a chronic viral infection after interleukin-10 receptor blockade. J Exp Med.
[68]  Erbar S, Diederich S, Maisner A (2008) Selective receptor expression restricts Nipah virus infection of endothelial cells. Virology Journal 5: 142.
[69]  Ren RB, Costantini F, Gorgacz EJ, Lee JJ, Racaniello VR (1990) Transgenic mice expressing a human poliovirus receptor: a new model for poloimyelitis. Cell 63: 353–362.
[70]  Monick MM, Staber JM, Thomas KW, Hunninghake GW (2001) Respiratory Syncytial Virus Infection Results in Activation of Multiple Protein Kinase C Isoforms Leading to Activation of Mitogen-Activated Protein Kinase. J Immunol 166: 2681–2687.
[71]  Farquhar MJ, Harris HJ, Diskar M, Jones S, Mee CJ, et al. (2008) Protein Kinase A-Dependent Step(s) in Hepatitis C Virus Entry and Infectivity. Journal of Virology 82: 8797–8811.
[72]  Corstjens PLAM, Araki Y, Westbroek P, Gonzalez EL (1996) A Gene Encoding the 16 kD Proteolipid Subunit of a Vacuolar-Type H(+)- ATPase from Pleurochrysis carterae strain 136 (Accession No. U48365 and U53182) (PGR 96-038). Plant Physiology 111: 652.
[73]  Corstjens PLAM, Araki Y, González EL (2001) A Coccolithophorid calcifying vesicle with a vacoular-type ATPase proton pump: cloning and immunolocalizatio of the V0 subunit c. Journal of Phycology 37: 71–78.
[74]  Araki Y, González EL (1998) V- and P-Type Ca2+-Stimulated Atpases in a Calcifying Strain of Pleurochrysis Sp. (Haptophyceae). Journal of Phycology 34: 79–88.
[75]  von Dassow P, Ogata H, Probert I, Wincker P, Da Silva C, et al. (2009) Transcriptome analysis of functional differentiation between haploid and diploid cells of Emiliania huxleyi, a globally significant photosynthetic calcifying cell. 10: R114–R114.
[76]  Rokitta SD, De Nooijer L, Trimborn S, De Vargas C, Rost B, et al. (2011) Transcriptome analyses reveal differential gene expression patterns between life-cycle stages of Emiliania huxleyi (Haptophyta) and reflect specialization to different ecological niches. Journal of Phycology 47: 829–838.
[77]  Mackinder L, Wheeler G, Schroeder D, Riebesell U, Brownlee C (2010) Molecular Mechanisms Underlying Calcification in Coccolithophores. Geomicrobiology Journal 27: 585.
[78]  Read BA, Wahlund TM (2007) Molecular Approaches to Emiliania huxleyi Coccolith Formation. In: B?uerlein E, editor. Handbook of Biomineralization. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA. pp. 227–241.
[79]  Marsh ME (2007) Regulation of Coccolith Calcification in Pleurochrysis carterae. In: B?uerlein E, editor. Handbook of Biomineralization. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA. pp. 211–226.
[80]  Taylor AR, Russell MA, Harper GM, Collins TT, Brownlee C (2007) Dynamics of formation and secretion of heterococcoliths by Coccolithus pelagicus ssp. braarudii. European Journal of Phycology 42: : 125 – 136.
[81]  Marsh ME (2003) Biochemistry and Molecular Biology : Regulation of CaCO3 formation in coccolithophores. Comparative Biochemistry and Physiology Part B 136: 743–754.
[82]  Paasche E (2002) A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions. Phycologia 40: 503–529.
[83]  Ozaki N, Sakuda S, Nagasawa H (2007) A novel highly acidic polysaccharide with inhibitory activity on calcification from the calcified scale "coccolith" of a coccolithophorid alga, Pleurochrysis haptonemofera. Biochemical and Biophysical Research Communications 357: 1172–1176.
[84]  Young JR (1994) Functions of coccoliths. In: Winter A, Siesser WG, editors. Coccolithophores. Cambridge: Cambridge University Press. pp. 63–82.
[85]  Dyhrman ST, Haley ST, Birkeland SR, Wurch LL, Cipriano MJ, et al. (2006) Long serial analysis of gene expression for gene discovery and transcriptome profiling in the widespread marine coccolithophore Emiliania huxleyi. Applied and Environmental Microbiology 72: 252–260.
[86]  Quinn P, Bowers RM, Zhang YY, Wahlund TM, Fanelli MA, et al. (2006) cDNA Microarrays as a Tool for Identification of Biomineralization Proteins in the Coccolithophorid Emiliania huxleyi (Haptophyta). Applied and Environmental Microbiology 72: 5512–5526.
[87]  Wahlund TM, Hadaegh AR, Clark R, Nguyen B, Fanelli M, et al. (2004) Analysis of Expressed Sequence Tags from Calcifying Cells of Marine Coccolithophorid (Emiliania huxleyi). Marine Biotechnology 6: 278–290.
[88]  Richier S, Kerros M-E, de Vargas C, Haramaty L, Falkowski PG, et al. (2009) Light-Dependent Transcriptional Regulation of Genes of Biogeochemical Interest in the Diploid and Haploid Life Cycle Stages of Emiliania huxleyi. Applied and Environmental Microbiology 75: 3366–3369.
[89]  Rokitta SD, Rost B (2012) Effects of CO2 and their modulation by light in the life-cycle stages of the coccolithophore Emiliania huxleyi Limnology and Oceanography. 57: 607–618.
[90]  Corstjens PLAM, van der Kooij A, Linschooten C, Brouwers G-J, Westbroek P, et al. (1998) GPA, a calcium-binding protein in the coccolithophorid Emiliania huxleyi (Prymnesiophyceae). Journal of Phycology 34: 622–630.
[91]  Soto AR, Zheng H, Shoemaker D, Rodriguez J, Read BA, et al. (2006) Identification and Preliminary Characterization of Two cDNAs Encoding Unique Carbonic Anhydrases from the Marine Alga Emiliania huxleyi. Applied and Environmental Microbiology 72: 5500–5511.
[92]  Saeed AI, Sharov V, White J, Li J, Liang W, et al. (2003) TM4: a free, open-source system for microarray data management and analysis. BioTechniques 34: 374–378.
[93]  Paradis E, Claude J, Strimmer K (2004) APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics 20: 289–290.
[94]  Team TRDC (2009) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing 2: ISBN 3-900051-900007-900050.
[95]  Altschul SF, Madden TL, Sch?ffer AA, Zhang J, Zhang Z, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25: 3389–3402.
[96]  Altschul SF, Wootton JC, Gertz EM, Agarwala R, Morgulis A, et al. (2005) Protein database searches using compositionally adjusted substitution matrices. The FEBS Journal 272: 5101–5109.
[97]  Bateman A, Birney E, Cerruti L, Durbin R, Etwiller L, et al. (2002) The Pfam Protein Families Database. Nucleic Acids Research 30: 276–280.
[98]  Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673–4680.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133