全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Genetic Variations in COMT and DRD2 Modulate Attentional Bias for Affective Facial Expressions

DOI: 10.1371/journal.pone.0081446

Full-Text   Cite this paper   Add to My Lib

Abstract:

Studies have revealed that catechol-O-methyltransferase (COMT) and dopaminegic receptor2 (DRD2) modulate human attention bias for palatable food or tobacco. However, the existing evidence about the modulations of COMT and DRD2 on attentional bias for facial expressions was still limited. In the study, 650 college students were genotyped with regard to COMT Val158Met and DRD2 TaqI A polymorphisms, and the attentional bias for facial expressions was assessed using the spatial cueing task. The results indicated that COMT Val158Met underpinned the individual difference in attentional bias for negative emotional expressions (P = 0.03) and the Met carriers showed more engagement bias for negative expressions than the Val/Val homozygote. On the contrary, DRD2 TaqIA underpinned the individual difference in attentional bias for positive expressions (P = 0.003) and individuals with TT genotype showed much more engagement bias for positive expressions than the individuals with CC genotype. Moreover, the two genes exerted significant interactions on the engagements for negative and positive expressions (P = 0.046, P = 0.005). These findings suggest that the individual differences in the attentional bias for emotional expressions are partially underpinned by the genetic polymorphisms in COMT and DRD2.

References

[1]  Hunt C, Keogh E, French CC (2007) Anxiety sensitivity, conscious awareness and selective attentional biases in children. Behav Res Ther 45: 497–509.
[2]  Keogh E, Dillon C, Georgiou G, Hunt C (2001) Selective attentional biases for physical threat in physical anxiety sensitivity. J Anxiety Disord 15: 299–315.
[3]  Nummenmaa L, Hietanen JK, Calvo MG, Hyona J (2011) Food catches the eye but not for everyone: a BMI-contingent attentional bias in rapid detection of nutriments. PLoS One 6: e19215.
[4]  Shechner T, Britton JC, Perez-Edgar K, Bar-Haim Y, Ernst M, et al. (2012) Attention biases, anxiety, and development: toward or away from threats or rewards? Depress Anxiety 29: 282–294.
[5]  Hannus A, Cornelissen FW, Lindemann O, Bekkering H (2005) Selection-for-action in visual search. Acta Psychol (Amst) 118: 171–191.
[6]  Raymond JE, Fenske MJ, Tavassoli NT (2003) Selective attention determines emotional responses to novel visual stimuli. Psychol Sci 14: 537–542.
[7]  Kulas JF, Conger JC, Smolin JM (2003) The effects of emotion on memory: an investigation of attentional bias. J Anxiety Disord 17: 103–113.
[8]  Hogarth L, Dickinson A, Janowski M, Nikitina A, Duka T (2008) The role of attentional bias in mediating human drug-seeking behaviour. Psychopharmacology (Berl) 201: 29–41.
[9]  Gibbs AA, Naudts KH, Spencer EP, David AS (2007) The role of dopamine in attentional and memory biases for emotional information. Am J Psychiatry 164: : 1603–1609; quiz 1624.
[10]  Luijten M, Veltman DJ, Hester R, Smits M, Pepplinkhuizen L, et al. (2012) Brain activation associated with attentional bias in smokers is modulated by a dopamine antagonist. Neuropsychopharmacology 37: 2772–2779.
[11]  Frankort A, Roefs A, Siep N, Roebroeck A, Havermans R, et al. (2012) Reward activity in satiated overweight women is decreased during unbiased viewing but increased when imagining taste: an event-related fMRI study. Int J Obes (Lond) 36: 627–637.
[12]  Justinova Z, Panlilio LV, Goldberg SR (2009) Drug addiction. Curr Top Behav Neurosci 1: 309–346.
[13]  Hari R, Kujala MV (2009) Brain basis of human social interaction: from concepts to brain imaging. Physiol Rev 89: 453–479.
[14]  Anokhin AP, Golosheykin S, Heath AC (2010) Heritability of individual differences in cortical processing of facial affect. Behav Genet 40: 178–185.
[15]  Chen P, Myers CG, Kopelman S, Garcia SM (2012) The hierarchical face: higher rankings lead to less cooperative looks. J Appl Psychol 97: 479–486.
[16]  Yamamoto K, Suzuki N (2008) [Facial expressions in the course of relationship formation]. Shinrigaku Kenkyu 78: 567–574.
[17]  Kennedy DP, Adolphs R (2012) Perception of emotions from facial expressions in high-functioning adults with autism. Neuropsychologia 50: 3313–3319.
[18]  Csukly G, Czobor P, Szily E, Takacs B, Simon L (2009) Facial expression recognition in depressed subjects: the impact of intensity level and arousal dimension. J Nerv Ment Dis 197: 98–103.
[19]  Stevens S, Rist F, Gerlach AL (2009) Influence of alcohol on the processing of emotional facial expressions in individuals with social phobia. Br J Clin Psychol 48: 125–140.
[20]  Franken IH, Hendriks VM, Stam CJ, Van den Brink W (2004) A role for dopamine in the processing of drug cues in heroin dependent patients. Eur Neuropsychopharmacol 14: 503–508.
[21]  Nathan PJ, O'Neill BV, Mogg K, Bradley BP, Beaver J, et al. (2012) The effects of the dopamine D(3) receptor antagonist GSK598809 on attentional bias to palatable food cues in overweight and obese subjects. Int J Neuropsychopharmacol 15: 149–161.
[22]  Lawrence AD, Calder AJ, McGowan SW, Grasby PM (2002) Selective disruption of the recognition of facial expressions of anger. Neuroreport 13: 881–884.
[23]  Zhu BT (2002) Catechol-O-Methyltransferase (COMT)-mediated methylation metabolism of endogenous bioactive catechols and modulation by endobiotics and xenobiotics: importance in pathophysiology and pathogenesis. Curr Drug Metab 3: 321–349.
[24]  Lachman HM, Papolos DF, Saito T, Yu YM, Szumlanski CL, et al. (1996) Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 6: 243–250.
[25]  Lotta T, Vidgren J, Tilgmann C, Ulmanen I, Melen K, et al. (1995) Kinetics of human soluble and membrane-bound catechol O-methyltransferase: a revised mechanism and description of the thermolabile variant of the enzyme. Biochemistry 34: 4202–4210.
[26]  Herrmann MJ, Wurflein H, Schreppel T, Koehler S, Muhlberger A, et al. (2009) Catechol-O-methyltransferase Val158Met genotype affects neural correlates of aversive stimuli processing. Cogn Affect Behav Neurosci 9: 168–172.
[27]  Jaber M, Robinson SW, Missale C, Caron MG (1996) Dopamine receptors and brain function. Neuropharmacology 35: 1503–1519.
[28]  Davis C, Levitan RD, Kaplan AS, Carter J, Reid C, et al. (2008) Reward sensitivity and the D2 dopamine receptor gene: A case-control study of binge eating disorder. Prog Neuropsychopharmacol Biol Psychiatry 32: 620–628.
[29]  Pecina M, Mickey BJ, Love T, Wang H, Langenecker SA, et al.. (2012) DRD2 polymorphisms modulate reward and emotion processing, dopamine neurotransmission and openness to experience. Cortex.
[30]  Shahmoradgoli Najafabadi M, Ohadi M, Joghataie MT, Valaie F, Riazalhosseini Y, et al. (2005) Association between the DRD2 A1 allele and opium addiction in the Iranian population. Am J Med Genet B Neuropsychiatr Genet 134B: 39–41.
[31]  Kukreti R, Tripathi S, Bhatnagar P, Gupta S, Chauhan C, et al. (2006) Association of DRD2 gene variant with schizophrenia. Neurosci Lett 392: 68–71.
[32]  Hirvonen MM, Laakso A, Nagren K, Rinne JO, Pohjalainen T, et al. (2009) C957T polymorphism of dopamine D2 receptor gene affects striatal DRD2 in vivo availability by changing the receptor affinity. Synapse 63: 907–912.
[33]  Neville MJ, Johnstone EC, Walton RT (2004) Identification and characterization of ANKK1: a novel kinase gene closely linked to DRD2 on chromosome band 11q23.1. Hum Mutat 23: 540–545.
[34]  Filopanti M, Lania AG, Spada A (2011) Pharmacogenetics of D2 dopamine receptor gene in prolactin-secreting pituitary adenomas. Expert Opin Drug Metab Toxicol 6: 43–53.
[35]  Thompson J, Thomas N, Singleton A, Piggott M, Lloyd S, et al. (1997) D2 dopamine receptor gene (DRD2) Taq1 A polymorphism: reduced dopamine D2 receptor binding in the human striatum associated with the A1 allele. Pharmacogenetics 7: 479–484.
[36]  Gong P, Zhang H, Chi W, Ge W, Zhang K, et al. (2012) An association study on the polymorphisms of dopaminergic genes with working memory in a healthy Chinese Han population. Cell Mol Neurobiol 32: 1011–1019.
[37]  Rodriguez-Jimenez R, Avila C, Ponce G, Ibanez MI, Rubio G, et al. (2006) The TaqIA polymorphism linked to the DRD2 gene is related to lower attention and less inhibitory control in alcoholic patients. Eur Psychiatry 21: 66–69.
[38]  Paclt I, Drtilkova I, Kopeckova M, Theiner P, Sery O, et al. (2010) The association between TaqI A polymorphism of ANKK1 (DRD2) gene and ADHD in the Czech boys aged between 6 and 13 years. Neuro Endocrinol Lett 31: 131–136.
[39]  Perkins KA, Lerman C, Grottenthaler A, Ciccocioppo MM, Milanak M, et al. (2008) Dopamine and opioid gene variants are associated with increased smoking reward and reinforcement owing to negative mood. Behav Pharmacol 19: 641–649.
[40]  Berman SM, Ozkaragoz T, Noble EP, Antolin T, Sheen C, et al. (2003) Differential associations of sex and D2 dopamine receptor (DRD2) genotype with negative affect and other substance abuse risk markers in children of alcoholics. Alcohol 30: 201–210.
[41]  Zung WW (1965) A Self-Rating Depression Scale. Arch Gen Psychiatry 12: 63–70.
[42]  Zung WW (1967) Factors influencing the self-rating depression scale. Arch Gen Psychiatry 16: 543–547.
[43]  Zung WW (1971) A rating instrument for anxiety disorders. Psychosomatics 12: 371–379.
[44]  Russell DW (1996) UCLA Loneliness Scale (Version 3): reliability, validity, and factor structure. J Pers Assess 66: 20–40.
[45]  Bai LMH, Huang YX, Luo Y J (2005) The Development of Native Chinese Affective Picture System-A pretest in 46 College Students. CHINESE MENTAL HEALTH JOURNAL 19: 719–722.
[46]  Cisler JM, Bacon AK, Williams NL (2009) Phenomenological Characteristics of Attentional Biases Towards Threat: A Critical Review. Cognit Ther Res 33: 221–234.
[47]  Cisler JM, Koster EH (2010) Mechanisms of attentional biases towards threat in anxiety disorders: An integrative review. Clin Psychol Rev 30: 203–216.
[48]  Koster EH, Crombez G, Verschuere B, Van Damme S, Wiersema JR (2006) Components of attentional bias to threat in high trait anxiety: Facilitated engagement, impaired disengagement, and attentional avoidance. Behav Res Ther 44: 1757–1771.
[49]  Gong P, Xi S, Shen G, Li S, Zhang P, et al. (2013) The effects of DBH, MAOA, and MAOB on attentional biases for facial expressions. J Mol Neurosci 49: 606–613.
[50]  Gibson BS, Amelio J (2000) Inhibition of return and attentional control settings. Percept Psychophys 62: 496–504.
[51]  Chao HF (2010) Inhibition of return to negative emotion: evidence from an emotional expression detection task. Emotion 10: 272–277.
[52]  Klein RM (2000) Inhibition of return. Trends Cogn Sci 4: 138–147.
[53]  Jongen EM, Smulders FT (2007) Sequence effects in a spatial cueing task: endogenous orienting is sensitive to orienting in the preceding trial. Psychol Res 71: 516–523.
[54]  Forster KI, Forster JC (2003) DMDX: a windows display program with millisecond accuracy. Behav Res Methods Instrum Comput 35: 116–124.
[55]  de Lamballerie X, Chapel F, Vignoli C, Zandotti C (1994) Improved current methods for amplification of DNA from routinely processed liver tissue by PCR. J Clin Pathol 47: 466–467.
[56]  Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39: 175–191.
[57]  Rijsdijk FV, Riese H, Tops M, Snieder H, Brouwer WH, et al. (2009) Neuroticism, recall bias and attention bias for valenced probes: a twin study. Psychol Med 39: 45–54.
[58]  Hankin BL, Gibb BE, Abela JR, Flory K (2010) Selective attention to affective stimuli and clinical depression among youths: role of anxiety and specificity of emotion. J Abnorm Psychol 119: 491–501.
[59]  Waters FA, Badcock JC, Maybery MT (2006) Selective attention for negative information and depression in schizophrenia. Psychol Med 36: 455–464.
[60]  Bishop SJ (2007) Neurocognitive mechanisms of anxiety: an integrative account. Trends Cogn Sci 11: 307–316.
[61]  Olsson CA, Anney RJ, Lotfi-Miri M, Byrnes GB, Williamson R, et al. (2005) Association between the COMT Val158Met polymorphism and propensity to anxiety in an Australian population-based longitudinal study of adolescent health. Psychiatr Genet 15: 109–115.
[62]  Bowirrat A, Oscar-Berman M (2005) Relationship between dopaminergic neurotransmission, alcoholism, and Reward Deficiency syndrome. Am J Med Genet B Neuropsychiatr Genet 132B: 29–37.
[63]  Posner MI (1980) Orienting of attention. Q J Exp Psychol 32: 3–25.
[64]  Veenstra EM, de Jong PJ (2012) Attentional bias in restrictive eating disorders. Stronger attentional avoidance of high-fat food compared to healthy controls? Appetite 58: 133–140.
[65]  Fani N, Gutman D, Tone EB, Almli L, Mercer KB, et al. (2013) FKBP5 and attention bias for threat: associations with hippocampal function and shape and attention bias for threat: associations with hippocampal function and shape. JAMA Psychiatry 70: 392–400.
[66]  Stollstorff M, Munakata Y, Jensen AP, Guild RM, Smolker HR, et al. (2013) Individual differences in emotion-cognition interactions: emotional valence interacts with serotonin transporter genotype to influence brain systems involved in emotional reactivity and cognitive control. Front Hum Neurosci 7: 327.
[67]  Gong P, Xi S, Li S, Cao G, Zhang P, et al. (2013) Effect of Val66Met polymorphism in BDNF on attentional bias in an extroverted Chinese Han population. Acta Neurobiol Exp (Wars) 73: 280–288.
[68]  Naudts KH, Azevedo RT, David AS, van Heeringen K, Gibbs AA (2013) Epistasis between 5-HTTLPR and ADRA2B polymorphisms influences attentional bias for emotional information in healthy volunteers. Int J Neuropsychopharmacol 15: 1027–1036.
[69]  Farrell SM, Tunbridge EM, Braeutigam S, Harrison PJ (2012) COMT Val(158)Met genotype determines the direction of cognitive effects produced by catechol-O-methyltransferase inhibition. Biol Psychiatry 71: 538–544.
[70]  Heinzel S, Dresler T, Baehne CG, Heine M, Boreatti-Hummer A, et al. (2012) COMT × DRD4 epistasis impacts prefrontal cortex function underlying response control. Cereb Cortex 23: 1453–1462.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133