[1] | Muench SP, Trinick J, Harrison MA (2011) Structural divergence of the rotary ATPases. Q Rev Biophys 44: 311-356. doi:10.1017/S0033583510000338. PubMed: 21426606.
|
[2] | Nishi T, Forgac M (2002) The vacuolar (H+)-ATPases--nature's most versatile proton pumps. Nat Rev Mol Cell Biol 3: 94-103. doi:10.1038/nrm729. PubMed: 11836511.
|
[3] | Yoshida M, Muneyuki E, Hisabori T (2001) ATP synthase- a marvellous rotary engine of the cell. NatRevMolCell Biol 2: 669-677.
|
[4] | Imamura H, Nakano M, Noji H, Muneyuki E, Ohkuma S et al. (2003) Evidence for rotation of V1-ATPase. Proc Natl Acad Sci U S A 100: 2312-2315. doi:10.1073/pnas.0436796100. PubMed: 12598655.
|
[5] | Noji H, Yasuda R, Yoshida M, Kinosita K Jr. (1997) Direct observation of the rotation of F1-ATPase. Nature 386: 299-302. doi:10.1038/386299a0. PubMed: 9069291.
|
[6] | Boyer PD (1997) The ATP synthase- a splendid molecular machine. Annu_Rev_Biochem 66: 717-749.
|
[7] | Sambongi Y, Iko Y, Tanabe M, Omote H, Iwamoto-Kihara A et al. (1999) Mechanical rotation of the c subunit oligomer in ATP synthase (F0F1): direct observation. Science 286: 1722-1724. doi:10.1126/science.286.5445.1722. PubMed: 10576736.
|
[8] | Yokoyama K, Nakano M, Imamura H, Yoshida M, Tamakoshi M (2003) Rotation of the proteolipid ring in the V-ATPase. J Biol Chem 278: 24255-24258. doi:10.1074/jbc.M303104200. PubMed: 12707282.
|
[9] | Grabe M, Wang H, Oster G (2000) The mechanochemistry of V-ATPase proton pumps. Biophys J 78: 2798-2813. doi:10.1016/S0006-3495(00)76823-8. PubMed: 10827963.
|
[10] | Hutcheon ML, Duncan TM, Ngai H, Cross RL (2001) Energy-driven subunit rotation at the interface between subunit a and the c oligomer in the F(O) sector of Escherichia coli ATP synthase. Proc Natl Acad Sci U S A 98: 8519-8524. doi:10.1073/pnas.151236798. PubMed: 11438702.
|
[11] | Zhang Z, Zheng Y, Mazon H, Milgrom E, Kitagawa N et al. (2008) Structure of the yeast vacuolar ATPase. J Biol Chem 283: 35983-35995. PubMed: 18955482.
|
[12] | Muench SP, Huss M, Song CF, Phillips C, Wieczorek H et al. (2009) Cryo-electron microscopy of the vacuolar ATPase motor reveals its mechanical and regulatory complexity. J Mol Biol 386: 989-999. doi:10.1016/j.jmb.2009.01.014. PubMed: 19244615.
|
[13] | Benlekbir S, Bueler SA, Rubinstein JL (2012) Structure of the vacuolar-type ATPase from Saccharomyces cerevisiae at 11-A resolution. Nature Structural and Molecular Biology 19: 1356-1362. doi:10.1038/nsmb.2422.
|
[14] | Rubinstein JL, Walker JE, Henderson R (2003) Structure of the mitochondrial ATP synthase by electron cryomicroscopy. EMBO J 22: 6182-6192. doi:10.1093/emboj/cdg608. PubMed: 14633978.
|
[15] | Lau WC, Rubinstein JL (2010) Structure of intact Thermus thermophilus V-ATPase by cryo-EM reveals organization of the membrane-bound V(O) motor. Proc Natl Acad Sci U S A 107: 1367-1372. doi:10.1073/pnas.0911085107. PubMed: 20080582.
|
[16] | Vonck J, Pisa KY, Morgner N, Brutschy B, Müller V (2009) Three-dimensional structure of A1A0ATP synthase from the hyperthermophilic archeon Pyrococcus furiosus by electron microscopy. Biol_Chem 284: 10110-10119.
|
[17] | Murata T, Yamato I, Kakinuma Y, Leslie AGW, Walker JE (2005) Structure of the rotor of the V-type Na+-ATPase from Enterococcus hirae. Science 308: 654-659. doi:10.1126/science.1110064. PubMed: 15802565.
|
[18] | Vollmar M, Schlieper D, Winn M, Buchner C, Groth G (2009) Structure of the c(14) Rotor Ring of the Proton Translocating Chloroplast ATP Synthase. Biol_Chem 284: 18228-18235.
|
[19] | Meier T, Polzer P, Diederichs K, Welte W, Dimroth P (2005) Structure of the Rotor Ring of F-Type Na+-ATPase from Ilyobacter tartaricus. Science 308: 659-662. doi:10.1126/science.1111199. PubMed: 15860619.
|
[20] | Pogoryelov D, Yu J, Meier T, Vonck J, Dimroth P et al. (2005) The c15 ring of the Spirulina platensis F-ATP synthase: F1/F0 symmetry mismatch is not obligatory. EMBO Rep 6: 1040-1044. doi:10.1038/sj.embor.7400517. PubMed: 16170308.
|
[21] | Mitome N, Suzuki T, Hayashi S, Yoshida M (2004) Thermophilic ATP synthase has a decamer c-ring: indication of noninteger 10:3 H+/ATP ratio and permissive elastic coupling. Proc Natl Acad Sci U S A 101: 12159-12164. doi:10.1073/pnas.0403545101. PubMed: 15302927.
|
[22] | Pogoryelov D, Reichen C, Klyszejko AL, Brunisholz R, Muller DJ et al. (2007) The oligomeric state of c rings from cyanobacterial F-ATP synthases varies from 13 to 15. J Bacteriol 189: 5895-5902. doi:10.1128/JB.00581-07. PubMed: 17545285.
|
[23] | Grabe M, Wang H, Oster G (2000) The mechanochemistry of V-ATPase proton pumps. Biophys J 78: 2798-3813. PubMed: 10827963.
|
[24] | Uchihashi T, Iino R, Ando T, Noji H (2011) High-speed atomic force microscopy reveals rotary catalysis of rotorless F(1)-ATPase. Science 333: 755-758. doi:10.1126/science.1205510. PubMed: 21817054.
|
[25] | Abrahams JP, Leslie AG, Lutter R, Walker JE (1994) Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature 370: 621-628. doi:10.1038/370621a0. PubMed: 8065448.
|
[26] | Giraud MF, Paumard P, Sanchez C, Brethes D, Velours J et al. (2012) Rotor architecture in the yeast and bovine F1-c-ring complexes of F-ATP synthase. J Struct Biol 177: 490-497.
|
[27] | Stock D, Leslie AG, Walker JE (1999) Molecular architecture of the rotary motor in ATP synthase. Science 286: 1700-1705. doi:10.1126/science.286.5445.1700. PubMed: 10576729.
|
[28] | Bernal RA, Stock D (2004) Three-dimensional structure of the intact Thermus thermophilus H+-ATPase/synthase by electron microscopy. Structure 12: 1789-1798. doi:10.1016/j.str.2004.07.017. PubMed: 15458628.
|
[29] | B?ttcher B, Bertsche I, Reuter R, Gr?ber P (2000) Direct visualisation of conformational changes in EF(0)F(1) by electron microscopy. J Mol Biol 296: 449-457. doi:10.1006/jmbi.1999.3435. PubMed: 10669600.
|
[30] | Matthies D, Haberstock S, Joos F, D?tsch V, Vonck J et al. (2011) Cell-free expression and assembly of ATP synthase. J Mol Biol 413: 593-603. doi:10.1016/j.jmb.2011.08.055. PubMed: 21925509.
|
[31] | Stewart AG, Lee LK, Donohoe M, Chaston JJ, Stock D (2012) The dynamic stator stalk of rotary ATPases. Nat Commun 3: 687. doi:10.1038/ncomms1693. PubMed: 22353718.
|
[32] | Sumner JP, Dow JA, Earley FG, Klein U, J?ger D et al. (1995) Regulation of plasma membrane V-ATPase activity by dissociation of peripheral subunits. J Biol Chem 270: 5649-5653. doi:10.1074/jbc.270.10.5649. PubMed: 7890686.
|
[33] | Parra KJ, Kane PM (1998) Reversible association between the V1 and V0 domains of yeast vacuolar H+-ATPase is an unconventional glucose-induced effect. Mol Cell Biol 18: 7064-7074. PubMed: 9819393.
|
[34] | Voss M, Vitavska O, Walz B, Wieczorek H, Baumann O (2007) Stimulus-induced Phosphorylation of Vacuolar H+-ATPase by Protein Kinase A. J Biol Chem 282: 33735-33742. doi:10.1074/jbc.M703368200. PubMed: 17872947.
|
[35] | Hong-Hermesdorf A, Brüx A, Grüber A, Grüber G, Schumacher K (2006) A WNK kinase binds and phosphorylates V-ATPase subunit C. FEBS Lett 580: 932-939. doi:10.1016/j.febslet.2006.01.018. PubMed: 16427632.
|
[36] | Bond A, Forgac M (2008) The Ras/cAMP/protein kinase A pathway regulates glucose-dependent assembly of the vacuolar (H+)-ATPase in yeast. J Biol Chem 283: 36513-36521. doi:10.1074/jbc.M805232200. PubMed: 18936098.
|
[37] | Muench SP, Scheres SH, Huss M, Phillips C, Vitavska O et al. (2013) Subunit positioning and stator filament stiffness in regulation and power transmission in the V1 motor of the Manduca sexta V-ATPase. J Mol Biol Epub ahead of print. PubMed: 24075871.
|
[38] | Tani K, Arthur CP, Tamakoshi M, Yokoyama K, Mitsuoka K et al. (2013) Visualization of two distinct states of disassembly in the bacterial V-ATPase from Thermus thermophilus. Microscopy (Oxf) 62: 467-474. doi:10.1093/jmicro/dft020. PubMed: 23572213.
|
[39] | Uchida E, Ohsumi Y, Anraku Y (1985) Purification and properties of H+-translocating, Mg2+-adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. J Biol Chem 260: 1090-1095. PubMed: 2857169.
|
[40] | Harrison M, Powell B, Finbow ME, Findlay JB (2000) Identification of lipid-accessible sites on the nephrops 16-kDa proteolipid incorporated into a hybrid vacuolar H(+)-ATPase: site-directed labeling with N-(1-Pyrenyl)cyclohexylcarbodiimide and fluorescence quenching analysis. Biochemistry 39: 7531-7537. doi:10.1021/bi000159o. PubMed: 10858302.
|
[41] | Schweikl H, Klein U, Schindlbeck M, Wieczorek H (1989) A vacuolar-type ATPase, partially purified from potassium transporting plasma membranes of tobacco hornworm midgut. J Biol Chem 264: 11136-11142. PubMed: 2525554.
|
[42] | Huss M, Ingenhorst G, K?nig S, Gassel M, Dr?se S et al. (2002) Concanamycin A, the specific inhibitor of V-ATPases, binds to the V(o) subunit c. J Biol Chem 277: 40544-40548. doi:10.1074/jbc.M207345200. PubMed: 12186879.
|
[43] | Walker M, Knight P, Trinick J (1985) Negative staining of myosin molecules. J Mol Biol 184: 535-542. doi:10.1016/0022-2836(85)90300-6. PubMed: 2413217.
|
[44] | Ludtke SJ, Baldwin PR, Chiu W (1999) EMAN: semiautomated software for high-resolution single-particle reconstructions. J Struct Biol 128: 82-97. doi:10.1006/jsbi.1999.4174. PubMed: 10600563.
|
[45] | Frank J, Radermacher M, Penczek P, Zhu J, Li Y et al. (1996) SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J Struct Biol 116: 190-199. doi:10.1006/jsbi.1996.0030. PubMed: 8742743.
|
[46] | van Heel M, Harauz G, Orlova EV, Schmidt R, Schatz M (1996) A new generation of the IMAGIC image processing system. J Struct Biol 116: 17-24. doi:10.1006/jsbi.1996.0004. PubMed: 8742718.
|
[47] | Burgess SA, Walker ML, Thirumurugan K, Trinick J, Knight PJ (2004) Use of negative stain and single-particle image processing to explore dynamic properties of flexible macromolecules. J Struct Biol 147: 247-258. doi:10.1016/j.jsb.2004.04.004. PubMed: 15450294.
|
[48] | Tang G, Peng L, Baldwin PR, Mann DS, Jiang W et al. (2007) EMAN2: an extensible image processing suite for electron microscopy. J Struct Biol 157: 38-46. doi:10.1016/j.jsb.2006.05.009. PubMed: 16859925.
|
[49] | Wriggers W, Milligan RA, Schulten K, McCammon JA (1998) Self-organizing neural networks bridge the biomolecular resolution gap. J Mol Biol 284: 1247-1254. doi:10.1006/jmbi.1998.2232. PubMed: 9878345.
|
[50] | Birmanns S, Rusu M, Wriggers W (2011) Using Sculptor and Situs for simultaneous assembly of atomic components into low-resolution shapes. J Struct Biol 173: 428-435. doi:10.1016/j.jsb.2010.11.002. PubMed: 21078392.
|
[51] | Stember JN, Wriggers W (2009) Bend-twist-stretch model for coarse elastic network simulation of biomolecular motion. J Chem Phys 131: 074112. doi:10.1063/1.3167410. PubMed: 19708737.
|
[52] | Chacón P, Tama F, Wriggers W (2003) Mega-Dalton biomolecular motion captured from electron microscopy reconstructions. J Mol Biol 326: 485-492. doi:10.1016/S0022-2836(02)01426-2. PubMed: 12559916.
|
[53] | Tama F, Wriggers W, Brooks CL 3rd (2002) Exploring global distortions of biological macromolecules and assemblies from low-resolution structural information and elastic network theory. J Mol Biol 321: 297-305. doi:10.1016/S0022-2836(02)00627-7. PubMed: 12144786.
|
[54] | Brink J, Ludtke SJ, Kong Y, Wakil SJ, Ma J et al. (2004) Experimental verification of conformational variation of human fatty acid synthase as predicted by normal mode analysis. Structure 12: 185-191. doi:10.1016/j.str.2004.01.015. PubMed: 14962379.
|
[55] | Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM et al. (2004) UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25: 1605-1612. doi:10.1002/jcc.20084. PubMed: 15264254.
|
[56] | Kinosita K Jr., Yasuda R, Noji H, Adachi K (2000) A rotary molecular motor that can work at near 100% efficiency. Philos Trans R Soc Lond B Biol Sci 355: 473-489. doi:10.1098/rstb.2000.0589. PubMed: 10836501.
|
[57] | W?chter A, Bi Y, Dunn SD, Cain BD, Sielaff H et al. (2011) Two rotary motors in F-ATP synthase are elastically coupled by a flexible rotor and a stiff stator stalk. Proc Natl Acad Sci U S A 108: 3924-3929. doi:10.1073/pnas.1011581108. PubMed: 21368147.
|
[58] | Sielaff H, Rennekamp H, W?chter A, Xie H, Hilbers F et al. (2008) Domain compliance and elastic power transmission in rotary F(O)F(1)-ATPase. Proc Natl Acad Sci U S A 105: 17760-17765. doi:10.1073/pnas.0807683105. PubMed: 19001275.
|
[59] | Sugawa M, Okada KA, Masaike T, Nishizaka T (2011) A change in the radius of rotation of F1-ATPase indicates a tilting motion of the central shaft. Biophys J 101: 2201-2206. doi:10.1016/j.bpj.2011.09.016. PubMed: 22067159.
|
[60] | Rees DM, Leslie AG, Walker JE (2009) The structure of the membrane extrinsic region of bovine ATP synthase. Proc Natl Acad Sci U S A 106: 21597-21601. doi:10.1073/pnas.0910365106. PubMed: 19995987.
|
[61] | Imamura H, Takeda M, Funamoto S, Shimabukuro K, Yoshida M et al. (2005) Rotation scheme of V1-motor is different from that of F1-motor. Proc Natl Acad Sci U S A 102: 17929-17933. doi:10.1073/pnas.0507764102. PubMed: 16330761.
|
[62] | Dickson VK, Silvester JA, Fearnley IM, Leslie AG, Walker JE (2006) On the structure of the stator of the mitochondrial ATP synthase. EMBO J 25: 2911-2918. doi:10.1038/sj.emboj.7601177. PubMed: 16791136.
|
[63] | Diepholz M, B?rsch M, B?ttcher B (2008) Structural organization of the V-ATPase and its implications for regulatory assembly and disassembly. Biochem Soc Trans 36: 1027-1031. doi:10.1042/BST0361027. PubMed: 18793183.
|
[64] | Lee LK, Stewart AG, Donohoe M, Bernal RA, Stock D (2010) The structure of the peripheral stalk of Thermus thermophilus H+-ATPase/synthase. Nat Struct Mol Biol 17: 373-378. doi:10.1038/nsmb.1761. PubMed: 20173764.
|
[65] | Diepholz M, Venzke D, Prinz S, Batisse C, Fl?rchinger B et al. (2008) A different conformation for EGC stator subcomplex in solution and in the assembled yeast V-ATPase: possible implications for regulatory disassembly. Structure 16: 1789-1798. doi:10.1016/j.str.2008.09.010. PubMed: 19081055.
|
[66] | Norgett EE, Borthwick KJ, Al-Lamki RS, Su Y, Smith AN et al. (2007) V1 and V0 domains of the human H+-ATPase are linked by an interaction between the G and a subunits. J Biol Chem 282: 14421-14427. doi:10.1074/jbc.M701226200. PubMed: 17360703.
|
[67] | Gibbons C, Montgomery MG, Leslie AG, Walker JE (2000) The structure of the central stalk in bovine F(1)-ATPase at 2.4 A resolution. Nat Struct Biol 7: 1055-1061. doi:10.1038/80981. PubMed: 11062563.
|
[68] | Numoto N, Hasegawa Y, Takeda K, Miki K (2009) Inter-subunit interaction and quaternary rearrangement defined by the central stalk of prokaryotic V1-ATPase. EMBO Rep 10: 1228-1234. doi:10.1038/embor.2009.202. PubMed: 19779483.
|
[69] | Bahar I, Lezon TR, Yang LW, Eyal E (2010) Global dynamics of proteins: bridging between structure and function. Annu Rev Biophys 39: 23-42. doi:10.1146/annurev.biophys.093008.131258. PubMed: 20192781.
|
[70] | Huss M, Wieczorek H (2007) Influence of ATP and ADP on dissociation of the V-ATPase into its V(1) and V(O) complexes. FEBS Lett 581: 5566-5572. doi:10.1016/j.febslet.2007.11.004. PubMed: 17997985.
|