Malaria represents a major public health problem in Africa. In the East African highlands, the high-altitude areas were previously considered too cold to support vector population and parasite transmission, rendering the region particularly prone to epidemic malaria due to the lack of protective immunity of the population. Since the 1980’s, frequent malaria epidemics have been reported and these successive outbreaks may have generated some immunity against Plasmodium falciparum amongst the highland residents. Serological studies reveal indirect evidence of human exposure to the parasite, and can reliably assess prevalence of exposure and transmission intensity in an endemic area. However, the vast majority of serological studies of malaria have been, hereto, limited to a small number of the parasite’s antigens. We surveyed and compared the antibody response profiles of age-stratified sera from residents of two endemic areas in the western Kenyan highlands with differing malaria transmission intensities, during two distinct seasons, against 854 polypeptides of P. falciparum using high-throughput proteomic microarray technology. We identified 107 proteins as serum antibody targets, which were then characterized for their gene ontology biological process and cellular component of the parasite, and showed significant enrichment for categories related to immune evasion, pathogenesis and expression on the host’s cell and parasite’s surface. Additionally, we calculated age-fitted annual seroconversion rates for the immunogenic proteins, and contrasted the age-dependent antibody acquisition for those antigens between the two sampling sites. We observed highly immunogenic antigens that produce stable antibody responses from early age in both sites, as well as less immunogenic proteins that require repeated exposure for stable responses to develop and produce different seroconversion rates between sites. We propose that a combination of highly and less immunogenic proteins could be used in serological surveys to detect differences in malaria transmission levels, distinguishing sites of unstable and stable transmission.
References
[1]
World Health Organization (2012). WHO World Malaria Report 2012.
[2]
B?dker R, Akida J, Shayo D, Kisinza W, Msangeni HA et al. (2003) Relationship between altitude and intensity of malaria transmission in the Usambara Mountains, Tanzania. J Med Entomol 40: 706-717. doi:10.1603/0022-2585-40.5.706. PubMed: 14596287.
[3]
Himeidan YE, Kweka EJ (2012) Malaria in East African highlands during the past 30 years: impact of environmental changes. Front Physiol 3: 315. PubMed: 22934065.
[4]
Bouma MJ, Baeza A, terVeen A, Pascual M (2011) Global malaria maps and climate change: a focus on East African highlands. Trends Parasitol 27: 421-422. doi:10.1016/j.pt.2011.07.003. PubMed: 21873114.
[5]
Kulkarni MA, Kweka E, Nyale E, Lyatuu E, Mosha FW et al. (2006) Entomological evaluation of malaria vectors at different altitudes in Hai district, northeastern Tanzania. J Med Entomol 43: 580-588. Available online at: doi:10.1603/0022-2585(2006)43[580:EEOMVA?]2.0.CO;2. PubMed: 16739419.
[6]
Imbahale SS, Mukabana WR, Orindi B, Githeko AK, Takken W (2012) Variation in malaria transmission dynamics in three different sites in Western Kenya. J Trop Med 2012: 912408.
[7]
Atieli HE, Zhou G, Lee MC, Kweka EJ, Afrane Y et al. (2011) Topography as a modifier of breeding habitats and concurrent vulnerability to malaria risk in the western Kenya highlands. Parasit Vectors 4: 241. doi:10.1186/1756-3305-4-241. PubMed: 22196078.
[8]
Shanks GD, Hay SI, Omumbo JA, Snow RW (2005) Malaria in Kenya's western highlands. Emerg Infect Dis 11: 1425-1432. doi:10.3201/eid1109.041184. PubMed: 16229773.
[9]
Lindsay SW, Martens WJ (1998) Malaria in the African highlands: past, present and future. Bull World Health Organ 76: 33-45. PubMed: 9615495.
[10]
Chaves LF, Hashizume M, Satake A, Minakawa N (2012) Regime shifts and heterogeneous trends in malaria time series from Western Kenya Highlands. Parasitology 139: 14-25. doi:10.1017/S0031182011001685. PubMed: 21996447.
[11]
Hay SI, Noor AM, Simba M, Busolo M, Guyatt HL et al. (2002) Clinical epidemiology of malaria in the highlands of western Kenya. Emerg Infect Dis 8: 543-548. doi:10.3201/eid0806.010309. PubMed: 12023907.
[12]
Doolan DL, Dobano C, Baird JK (2009) Acquired immunity to malaria. Clin Microbiol Rev 22: 13-36.
[13]
Vestergaard LS, Lusingu JP, Nielsen MA, Mmbando BP, Dodoo D et al. (2008) Differences in human antibody reactivity to Plasmodium falciparum variant surface antigens are dependent on age and malaria transmission intensity in northeastern Tanzania. Infect Immun 76: 2706-2714. doi:10.1128/IAI.01401-06. PubMed: 18250179.
[14]
Nogaro SI, Hafalla JC, Walther B, Remarque EJ, Tetteh KK et al. (2011) The breadth, but not the magnitude, of circulating memory B cell responses to P. falciparum increases with age/exposure in an area of low transmission. PLOS ONE 6: e25582. doi:10.1371/journal.pone.0025582. PubMed: 21991321.
[15]
Crompton PD, Kayala MA, Traore B, Kayentao K, Ongoiba A et al. (2010) A prospective analysis of the Ab response to Plasmodium falciparum before and after a malaria season by protein microarray. Proc Natl Acad Sci U S A 107: 6958-6963. doi:10.1073/pnas.1001323107. PubMed: 20351286.
[16]
Osier FH, Fegan G, Polley SD, Murungi L, Verra F et al. (2008) Breadth and magnitude of antibody responses to multiple Plasmodium falciparum merozoite antigens are associated with protection from clinical malaria. Infect Immun 76: 2240-2248. doi:10.1128/IAI.01585-07. PubMed: 18316390.
[17]
Drakeley CJ, Corran PH, Coleman PG, Tongren JE, McDonald SL et al. (2005) Estimating medium- and long-term trends in malaria transmission by using serological markers of malaria exposure. Proc Natl Acad Sci U S A 102: 5108-5113. doi:10.1073/pnas.0408725102. PubMed: 15792998.
[18]
Corran P, Coleman P, Riley E, Drakeley C (2007) Serology: a robust indicator of malaria transmission intensity? Trends Parasitol 23: 575-582. doi:10.1016/j.pt.2007.08.023. PubMed: 17988945.
[19]
Stewart L, Gosling R, Griffin J, Gesase S, Campo J et al. (2009) Rapid assessment of malaria transmission using age-specific sero-conversion rates. PLOS ONE 4: e6083. doi:10.1371/journal.pone.0006083. PubMed: 19562032.
[20]
Badu K, Afrane YA, Larbi J, Stewart VA, Waitumbi J et al. (2012) Marked variation in MSP-119 antibody responses to malaria in western Kenyan highlands. BMC Infect Dis 12: 50. doi:10.1186/1471-2334-12-50. PubMed: 22380785.
[21]
Hashizume M, Terao T, Minakawa N (2009) The Indian Ocean Dipole and malaria risk in the highlands of western Kenya. Proc Natl Acad Sci U S A 106: 1857-1862. doi:10.1073/pnas.0806544106. PubMed: 19174522.
[22]
Minakawa N, Munga S, Atieli F, Mushinzimana E, Zhou G et al. (2005) Spatial distribution of anopheline larval habitats in Western Kenyan highlands: effects of land cover types and topography. Am J Trop Med Hyg 73: 157-165. PubMed: 16014851.
Molina DM, Pal S, Kayala MA, Teng A, Kim PJ et al. (2010) Identification of immunodominant antigens of Chlamydia trachomatis using proteome microarrays. Vaccine 28: 3014-3024. doi:10.1016/j.vaccine.2009.12.020. PubMed: 20044059.
[25]
Barbour AG, Jasinskas A, Kayala MA, Davies DH, Steere AC et al. (2008) A genome-wide proteome array reveals a limited set of immunogens in natural infections of humans and white-footed mice with Borrelia burgdorferi. Infect Immun 76: 3374-3389. doi:10.1128/IAI.00048-08. PubMed: 18474646.
[26]
Beare PA, Chen C, Bouman T, Pablo J, Unal B et al. (2008) Candidate antigens for Q fever serodiagnosis revealed by immunoscreening of a Coxiella burnetii protein microarray. Clin Vaccine Immunol 15: 1771-1779. doi:10.1128/CVI.00300-08. PubMed: 18845831.
[27]
Felgner PL, Kayala MA, Vigil A, Burk C, Nakajima-Sasaki R et al. (2009) A Burkholderia pseudomallei protein microarray reveals serodiagnostic and cross-reactive antigens. Proc Natl Acad Sci U S A 106: 13499-13504. doi:10.1073/pnas.0812080106. PubMed: 19666533.
[28]
Eyles JE, Unal B, Hartley MG, Newstead SL, Flick-Smith H et al. (2007) Immunodominant Francisella tularensis antigens identified using proteome microarray. Proteomics 7: 2172-2183. doi:10.1002/pmic.200600985. PubMed: 17533643.
[29]
Trieu A, Kayala MA, Burk C, Molina DM, Freilich DA et al. (2011) Sterile protective immunity to malaria is associated with a panel of novel P. falciparum antigens. Mol Cell Proteomics 10: 007948
[30]
Tan X, Traore B, Kayentao K, Ongoiba A, Doumbo S et al. (2011) Hemoglobin S and C heterozygosity enhances neither the magnitude nor breadth of antibody responses to a diverse array of Plasmodium falciparum antigens. J Infect Dis 204: 1750-1761. doi:10.1093/infdis/jir638. PubMed: 21998476.
[31]
Nnedu ON, O'Leary MP, Mutua D, Mutai B, Kalantari-Dehaghi M et al. (2011) Humoral immune responses to Plasmodium falciparum among HIV-1-infected Kenyan adults. Proteomics Clin Appl 5: 613-623. doi:10.1002/prca.201100021. PubMed: 21956928.
[32]
Barry AE, Trieu A, Fowkes FJ, Pablo J, Kalantari-Dehaghi M et al. (2011) The stability and complexity of antibody responses to the major surface antigen of Plasmodium falciparum are associated with age in a malaria endemic area. Mol Cell Proteomics 10: 008326
[33]
Doolan DL, Mu Y, Unal B, Sundaresh S, Hirst S et al. (2008) Profiling humoral immune responses to P. falciparum infection with protein microarrays. Proteomics 8: 4680-4694. doi:10.1002/pmic.200800194. PubMed: 18937256.
[34]
Githeko AK, Ayisi JM, Odada PK, Atieli FK, Ndenga BA et al. (2006) Topography and malaria transmission heterogeneity in western Kenya highlands: prospects for focal vector control. Malar J 5: 107. doi:10.1186/1475-2875-5-107. PubMed: 17096835.
[35]
Zhou G, Minakawa N, Githeko AK, Yan G (2004) Association between climate variability and malaria epidemics in the East African highlands. Proc Natl Acad Sci U S A 101: 2375-2380. doi:10.1073/pnas.0308714100. PubMed: 14983017.
[36]
Pascual M, Cazelles B, Bouma MJ, Chaves LF, Koelle K (2008) Shifting patterns: malaria dynamics and rainfall variability in an African highland. Proc Biol Sci 275: 123-132. doi:10.1098/rspb.2007.1068. PubMed: 17999952.
[37]
Kristan M, Abeku TA, Beard J, Okia M, Rapuoda B et al. (2008) Variations in entomological indices in relation to weather patterns and malaria incidence in East African highlands: implications for epidemic prevention and control. Malar J 7: 231. doi:10.1186/1475-2875-7-231. PubMed: 18983649.
[38]
Davies DH, Liang X, Hernandez JE, Randall A, Hirst S et al. (2005) Profiling the humoral immune response to infection by using proteome microarrays: high-throughput vaccine and diagnostic antigen discovery. Proc Natl Acad Sci U S A 102: 547-552. doi:10.1073/pnas.0408782102. PubMed: 15647345.
[39]
Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30: 207-210. doi:10.1093/nar/30.1.207. PubMed: 11752295.
[40]
Aurrecoechea C, Brestelli J, Brunk BP, Dommer J, Fischer S et al. (2009) PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids Res 37: D539-D543. doi:10.1093/nar/gkn814. PubMed: 18957442.
[41]
McClave JT, Sincich T (2012) Statistics. New Jersey: Prentice Hall.
[42]
Zhou G, Afrane YA, Vardo-Zalik AM, Atieli H, Zhong D et al. (2011) Changing patterns of malaria epidemiology between 2002 and 2010 in Western Kenya: the fall and rise of malaria. PLOS ONE 6: e20318. doi:10.1371/journal.pone.0020318. PubMed: 21629783.
[43]
Spielmann T, Gardiner DL, Beck HP, Trenholme KR, Kemp DJ (2006) Organization of ETRAMPs and EXP-1 at the parasite-host cell interface of malaria parasites. Mol Microbiol 59: 779-794. doi:10.1111/j.1365-2958.2005.04983.x. PubMed: 16420351.
[44]
Koncarevic S, Bogumil R, Becker K (2007) SELDI-TOF-MS analysis of chloroquine resistant and sensitive Plasmodium falciparum strains. Proteomics 7: 711-721. doi:10.1002/pmic.200600552. PubMed: 17295353.
[45]
Wickramarachchi T, Cabrera AL, Sinha D, Dhawan S, Chandran T et al. (2009) A novel Plasmodium falciparum erythrocyte binding protein associated with the merozoite surface, PfDBLMSP. Int J Parasitol 39: 763-773. doi:10.1016/j.ijpara.2008.12.004. PubMed: 19367830.
[46]
Woodberry T, Minigo G, Piera KA, Hanley JC, de Silva HD et al. (2008) Antibodies to Plasmodium falciparum and Plasmodium vivax merozoite surface protein 5 in Indonesia: species-specific and cross-reactive responses. J Infect Dis 198: 134-142. doi:10.1086/588711. PubMed: 18471084.
[47]
Benet A, Tavul L, Reeder JC, Cortés A (2004) Diversity of Plasmodium falciparum vaccine candidate merozoite surface protein 4 (MSP4) in a natural population. Mol Biochem Parasitol 134: 275-280. doi:10.1016/j.molbiopara.2003.12.005. PubMed: 15003847.
[48]
Shonhai A, Boshoff A, Blatch GL (2007) The structural and functional diversity of Hsp70 proteins from Plasmodium falciparum. Protein Sci 16: 1803-1818. doi:10.1110/ps.072918107. PubMed: 17766381.
[49]
Mbengue A, Audiger N, Vialla E, Dubremetz JF, Braun-Breton C (2013) Novel Plasmodium falciparum Maurer's clefts protein families implicated in the release of infectious merozoites. Mol Microbiol 88: 425-442. doi:10.1111/mmi.12193. PubMed: 23517413.
[50]
Fontaine A, Pophillat M, Bourdon S, Villard C, Belghazi M et al. (2010) Specific antibody responses against membrane proteins of erythrocytes infected by Plasmodium falciparum of individuals briefly exposed to malaria. Malar J 9: 276. doi:10.1186/1475-2875-9-276. PubMed: 20932351.
[51]
Costa RM, Nogueira F, de Sousa KP, Vitorino R, Silva MS (2013) Immunoproteomic analysis of Plasmodium falciparum antigens using sera from patients with clinical history of imported malaria. Malar J 12: 100. doi:10.1186/1475-2875-12-100. PubMed: 23506095.
[52]
Segeja MD, Mmbando BP, Seth MD, Lusingu JP, Lemnge MM (2010) Acquisition of antibodies to merozoite surface protein 3 among residents of Korogwe, north eastern Tanzania. BMC Infect Dis 10: 55. doi:10.1186/1471-2334-10-55. PubMed: 20205959.
[53]
Wipasa J, Suphavilai C, Okell LC, Cook J, Corran PH et al. (2010) Long-lived antibody and B Cell memory responses to the human malaria parasites, Plasmodium falciparum and Plasmodium vivax. PLOS Pathog 6: e1000770.
[54]
Bousema T, Youssef RM, Cook J, Cox J, Alegana VA et al. (2010) Serologic markers for detecting malaria in areas of low endemicity, Somalia, 2008. Emerg Infect Dis 16: 392-399. doi:10.3201/eid1603.090732. PubMed: 20202412.
[55]
Reddy SB, Anders RF, Beeson JG, F?rnert A, Kironde F et al. (2012) High affinity antibodies to Plasmodium falciparum merozoite antigens are associated with protection from malaria. PLOS ONE 7: e32242. doi:10.1371/journal.pone.0032242. PubMed: 22363818.
[56]
Hill AV (2011) Vaccines against malaria. Philos Trans R Soc Lond B Biol Sci 366: 2806-2814. doi:10.1098/rstb.2011.0091. PubMed: 21893544.
[57]
Snow RW, Marsh K (2002) The consequences of reducing transmission of Plasmodium falciparum in Africa. Adv Parasitol 52: 235-264. doi:10.1016/S0065-308X(02)52013-3. PubMed: 12521262.
[58]
Zhou G, Minakawa N, Githeko A, Yan G (2004) Spatial distribution patterns of malaria vectors and sample size determination in spatially heterogeneous environments: a case study in the west Kenyan highland. J Med Entomol 41: 1001-1009. doi:10.1603/0022-2585-41.6.1001. PubMed: 15605637.
[59]
Githeko AK, Ototo EN, Guiyun Y (2012) Progress towards understanding the ecology and epidemiology of malaria in the western Kenya highlands: opportunities and challenges for control under climate change risk. Acta Trop 121: 19-25. doi:10.1016/j.actatropica.2011.10.002. PubMed: 22015426.
[60]
Wanjala CL, Waitumbi J, Zhou G, Githeko AK (2011) Identification of malaria transmission and epidemic hotspots in the western Kenya highlands: its application to malaria epidemic prediction. Parasit Vectors 4: 81. doi:10.1186/1756-3305-4-81. PubMed: 21595898.
[61]
Munyekenye OG, Githeko AK, Zhou G, Mushinzimana E, Minakawa N et al. (2005) Plasmodium falciparum spatial analysis, western Kenya highlands. Emerg Infect Dis 11: 1571-1577. doi:10.3201/eid1110.050106. PubMed: 16318698.
[62]
Baliraine FN, Afrane YA, Amenya DA, Bonizzoni M, Menge DM et al. (2009) High prevalence of asymptomatic plasmodium falciparum infections in a highland area of western Kenya: a cohort study. J Infect Dis 200: 66-74. doi:10.1086/599317. PubMed: 19476434.
[63]
Githeko AK, Brandling-Bennett AD, Beier M, Atieli F, Owaga M et al. (1992) The reservoir of Plasmodium falciparum malaria in a holoendemic area of western Kenya. Trans R Soc Trop Med Hyg 86: 355-358. doi:10.1016/0035-9203(92)90216-Y. PubMed: 1359683.
[64]
Rolfes MA, McCarra M, Magak NG, Ernst KC, Dent AE et al. (2012) Development of Clinical Immunity to Malaria in Highland Areas of Low and Unstable Transmission. Am J Trop Med Hyg 87: 806–812. PubMed: 22987652.
[65]
Noland GS, Hendel-Paterson B, Min XM, Moormann AM, Vulule JM et al. (2008) Low prevalence of antibodies to preerythrocytic but not blood-stage Plasmodium falciparum antigens in an area of unstable malaria transmission compared to prevalence in an area of stable malaria transmission. Infect Immun 76: 5721-5728. doi:10.1128/IAI.00591-08. PubMed: 18809666.
[66]
Drakeley C, Cook J (2009) Potential contribution of sero-epidemiological analysis for monitoring malaria control and elimination: historical and current perspectives. Adv Parasitol 69: 299-352. doi:10.1016/S0065-308X(09)69005-9. PubMed: 19622411.
[67]
Orlandi-Pradines E, Penhoat K, Durand C, Pons C, Bay C et al. (2006) Antibody responses to several malaria pre-erythrocytic antigens as a marker of malaria exposure among travelers. Am J Trop Med Hyg 74: 979-985. PubMed: 16760507.