[1] | Peled JU, Kuang FL, Iglesias-Ussel MD, Roa S, Kalis SL et al. (2008) The biochemistry of somatic hypermutation. Annu Rev Immunol 26: 481-511. doi:10.1146/annurev.immunol.26.021607.090236. PubMed: 18304001.
|
[2] | Stavnezer J, Guikema JE, Schrader CE (2008) Mechanism and regulation of class switch recombination. Annu Rev Immunol 26: 261-292. doi:10.1146/annurev.immunol.26.021607.090248. PubMed: 18370922.
|
[3] | Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y et al. (2000) Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102: 553-563. doi:10.1016/S0092-8674(00)00078-7. PubMed: 11007474.
|
[4] | Revy P, Muto T, Levy Y, Geissmann F, Plebani A et al. (2000) Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell 102: 565-575. doi:10.1016/S0092-8674(00)00079-9. PubMed: 11007475.
|
[5] | Smith HC, Bennett RP, Kizilyer A, McDougall WM, Prohaska KM (2012) Functions and regulation of the APOBEC family of proteins. Semin Cell Dev Biol 23: 258-268. doi:10.1016/j.semcdb.2011.10.004. PubMed: 22001110.
|
[6] | Imai K, Slupphaug G, Lee WI, Revy P, Nonoyama S et al. (2003) Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nat Immunol 4: 1023-1028. doi:10.1038/ni974. PubMed: 12958596.
|
[7] | Di Noia J, Neuberger MS (2002) Altering the pathway of immunoglobulin hypermutation by inhibiting uracil-DNA glycosylase. Nature 419: 43-48. doi:10.1038/nature00981. PubMed: 12214226.
|
[8] | Masani S, Han L, Yu K (2013) Apurinic/Apyrimidinic Endonuclease 1 Is the Essential Nuclease during Immunoglobulin Class Switch Recombination. Mol Cell Biol 33: 1468-1473. doi:10.1128/MCB.00026-13. PubMed: 23382073.
|
[9] | Guikema JE, Linehan EK, Tsuchimoto D, Nakabeppu Y, Strauss PR et al. (2007) APE1- and APE2-dependent DNA breaks in immunoglobulin class switch recombination. J Exp Med 204: 3017-3026. doi:10.1084/jem.20071289. PubMed: 18025127.
|
[10] | Arudchandran A, Bernstein RM, Max EE (2004) Single-stranded DNA breaks adjacent to cytosines occur during Ig gene class switch recombination. J Immunol 173: 3223-3229. PubMed: 15322184.
|
[11] | Rush JS, Fugmann SD, Schatz DG (2004) Staggered AID-dependent DNA double strand breaks are the predominant DNA lesions targeted to S mu in Ig class switch recombination. Int Immunol 16: 549-557. doi:10.1093/intimm/dxh057. PubMed: 15039385.
|
[12] | Petersen S, Casellas R, Reina-San-Martin B, Chen HT, Difilippantonio MJ, et al. (2001) AID is required to initiate Nbs1/gamma-H2AX focus formation and mutations at sites of class switching. Nature 414: 660-665.
|
[13] | Boboila C, Alt FW, Schwer B (2012) Classical and alternative end-joining pathways for repair of lymphocyte-specific and general DNA double-strand breaks. Adv Immunol 116: 1-49. doi:10.1016/B978-0-12-394300-2.00001-6. PubMed: 23063072.
|
[14] | Arakawa H, Moldovan GL, Saribasak H, Saribasak NN, Jentsch S et al. (2006) A role for PCNA ubiquitination in immunoglobulin hypermutation. PLoS Biol 4: e366. doi:10.1371/journal.pbio.0040366. PubMed: 17105346.
|
[15] | Martomo SA, Yang WW, Gearhart PJ (2004) A role for Msh6 but not Msh3 in somatic hypermutation and class switch recombination. J Exp Med 200: 61-68. doi:10.1084/jem.20040691. PubMed: 15238605.
|
[16] | Martin A, Li Z, Lin DP, Bardwell PD, Iglesias-Ussel MD et al. (2003) Msh2 ATPase activity is essential for somatic hypermutation at a-T basepairs and for efficient class switch recombination. J Exp Med 198: 1171-1178. doi:10.1084/jem.20030880. PubMed: 14568978.
|
[17] | Rada C, Jarvis JM, Milstein C (2002) AID-GFP chimeric protein increases hypermutation of Ig genes with no evidence of nuclear localization. Proc Natl Acad Sci U S A 99: 7003-7008. doi:10.1073/pnas.092160999. PubMed: 12011459.
|
[18] | Faili A, Aoufouchi S, Weller S, Vuillier F, Stary A et al. (2004) DNA polymerase eta is involved in hypermutation occurring during immunoglobulin class switch recombination. J Exp Med 199: 265-270. doi:10.1084/jem.20031831. PubMed: 14734526.
|
[19] | Morgan HD, Dean W, Coker HA, Reik W, Petersen-Mahrt SK (2004) Activation-induced cytidine deaminase deaminates 5-methylcytosine in DNA and is expressed in pluripotent tissues: implications for epigenetic reprogramming. J Biol Chem 279: 52353-52360. doi:10.1074/jbc.M407695200. PubMed: 15448152.
|
[20] | Cortellino S, Xu J, Sannai M, Moore R, Caretti E et al. (2011) Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell 146: 67-79. doi:10.1016/j.cell.2011.06.020. PubMed: 21722948.
|
[21] | Guo JU, Su Y, Zhong C, Ming GL, Song H (2011) Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 145: 423-434. doi:10.1016/j.cell.2011.03.022. PubMed: 21496894.
|
[22] | Rangam G, Schmitz KM, Cobb AJ, Petersen-Mahrt SK (2012) AID enzymatic activity is inversely proportional to the size of cytosine C5 orbital cloud. PLOS ONE 7: e43279. doi:10.1371/journal.pone.0043279. PubMed: 22916236.
|
[23] | Wijesinghe P, Bhagwat AS (2012) Efficient deamination of 5-methylcytosines in DNA by human APOBEC3A, but not by AID or APOBEC3G. Nucleic Acids Res 40: 9206-9217. doi:10.1093/nar/gks685. PubMed: 22798497.
|
[24] | Nabel CS, Jia H, Ye Y, Shen L, Goldschmidt HL et al. (2012) AID/APOBEC deaminases disfavor modified cytosines implicated in DNA demethylation. Nat Chem Biol 8: 751-758. doi:10.1038/nchembio.1042. PubMed: 22772155.
|
[25] | Kim YJ, Wilson DM 3rd (2012) Overview of base excision repair biochemistry. Curr Mol Pharmacol 5: 3-13. doi:10.2174/1874467211205010003. PubMed: 22122461.
|
[26] | Hasham MG, Donghia NM, Coffey E, Maynard J, Snow KJ et al. (2010) Widespread genomic breaks generated by activation-induced cytidine deaminase are prevented by homologous recombination. Nat Immunol 11: 820-826. doi:10.1038/ni.1909. PubMed: 20657597.
|
[27] | Popp C, Dean W, Feng S, Cokus SJ, Andrews S et al. (2010) Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature 463: 1101-1105. doi:10.1038/nature08829. PubMed: 20098412.
|
[28] | Bhutani N, Brady JJ, Damian M, Sacco A, Corbel SY et al. (2010) Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature 463: 1042-1047. doi:10.1038/nature08752. PubMed: 20027182.
|
[29] | Bhutani N, Decker MN, Brady JJ, Bussat RT, Burns DM et al. (2013) A critical role for AID in the initiation of reprogramming to induced pluripotent stem cells. FASEB J 27: 1107-1113. doi:10.1096/fj.12-222125. PubMed: 23212122.
|
[30] | Kumar R, Dimenna L, Schrode N, Liu TC, Franck P et al. (2013) AID stabilizes stem-cell phenotype by removing epigenetic memory of pluripotency genes. Nature, 500: 89–92. PubMed: 23803762.
|
[31] | Mu?oz DP, Lee EL, Takayama S, Coppé JP, Heo SJ et al. (2013) Activation-induced cytidine deaminase (AID) is necessary for the epithelial-mesenchymal transition in mammary epithelial cells. Proc Natl Acad Sci U S A 110: E2977-E2986. doi:10.1073/pnas.1301021110. PubMed: 23882083.
|
[32] | Rai K, Huggins IJ, James SR, Karpf AR, Jones DA et al. (2008) DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell 135: 1201-1212. doi:10.1016/j.cell.2008.11.042. PubMed: 19109892.
|
[33] | Patenaude AM, Orthwein A, Hu Y, Campo VA, Kavli B et al. (2009) Active nuclear import and cytoplasmic retention of activation-induced deaminase. Nat Struct Mol Biol 16: 517-527. doi:10.1038/nsmb.1598. PubMed: 19412186.
|
[34] | McBride KM, Barreto V, Ramiro AR, Stavropoulos P, Nussenzweig MC (2004) Somatic hypermutation is limited by CRM1-dependent nuclear export of activation-induced deaminase. J Exp Med 199: 1235-1244. doi:10.1084/jem.20040373. PubMed: 15117971.
|
[35] | Ito S, Nagaoka H, Shinkura R, Begum N, Muramatsu M et al. (2004) Activation-induced cytidine deaminase shuttles between nucleus and cytoplasm like apolipoprotein B mRNA editing catalytic polypeptide 1. Proc Natl Acad Sci U S A 101: 1975-1980. doi:10.1073/pnas.0307335101. PubMed: 14769937.
|
[36] | H?sler J, Rada C, Neuberger MS (2011) Cytoplasmic activation-induced cytidine deaminase (AID) exists in stoichiometric complex with translation elongation factor 1alpha (eEF1A). Proc Natl Acad Sci U S A 108: 18366-18371. doi:10.1073/pnas.1106729108. PubMed: 22042842.
|
[37] | Aoufouchi S, Faili A, Zober C, D'Orlando O, Weller S et al. (2008) Proteasomal degradation restricts the nuclear lifespan of AID. J Exp Med 205: 1357-1368. doi:10.1084/jem.20070950. PubMed: 18474627.
|
[38] | Uchimura Y, Barton LF, Rada C, Neuberger MS (2011) REG-gamma associates with and modulates the abundance of nuclear activation-induced deaminase. J Exp Med 208: 2385-2391. doi:10.1084/jem.20110856. PubMed: 22042974.
|
[39] | Geisberger R, Rada C, Neuberger MS (2009) The stability of AID and its function in class-switching are critically sensitive to the identity of its nuclear-export sequence. Proc Natl Acad Sci U S A 106: 6736-6741. doi:10.1073/pnas.0810808106. PubMed: 19351893.
|
[40] | Zaprazna K, Atchison ML (2012) YY1 controls immunoglobulin class switch recombination and nuclear activation-induced deaminase levels. Mol Cell Biol 32: 1542-1554. doi:10.1128/MCB.05989-11. PubMed: 22290437.
|
[41] | Yoshikawa K, Okazaki IM, Eto T, Kinoshita K, Muramatsu M et al. (2002) AID enzyme-induced hypermutation in an actively transcribed gene in fibroblasts. Science 296: 2033-2036. doi:10.1126/science.1071556. PubMed: 12065838.
|
[42] | Okazaki IM, Kinoshita K, Muramatsu M, Yoshikawa K, Honjo T (2002) The AID enzyme induces class switch recombination in fibroblasts. Nature 416: 340-345. doi:10.1038/nature727. PubMed: 11875397.
|
[43] | Martin A, Bardwell PD, Woo CJ, Fan M, Shulman MJ et al. (2002) Activation-induced cytidine deaminase turns on somatic hypermutation in hybridomas. Nature 415: 802-806. doi:10.1038/nature714. PubMed: 11823785.
|
[44] | Maeda K, Singh SK, Eda K, Kitabatake M, Pham P et al. (2010) GANP-mediated recruitment of activation-induced cytidine deaminase to cell nuclei and to immunoglobulin variable region. DNA - J Biol Chem 285: 23945-23953. doi:10.1074/jbc.M110.131441.
|
[45] | Cattoretti G, Büttner M, Shaknovich R, Kremmer E, Alobeid B et al. (2006) Nuclear and cytoplasmic AID in extrafollicular and germinal center B cells. Blood 107: 3967-3975. doi:10.1182/blood-2005-10-4170. PubMed: 16439679.
|
[46] | Schreck S, Buettner M, Kremmer E, Bogdan M, Herbst H et al. (2006) Activation-induced cytidine deaminase (AID) is expressed in normal spermatogenesis but only infrequently in testicular germ cell tumours. J Pathol 210: 26-31. doi:10.1002/path.2014. PubMed: 16783758.
|
[47] | Brar SS, Watson M, Diaz M (2004) Activation-induced cytosine deaminase (AID) is actively exported out of the nucleus but retained by the induction of DNA breaks. J Biol Chem 279: 26395-26401. doi:10.1074/jbc.M403503200. PubMed: 15087440.
|
[48] | Ward JF, Evans JW, Limoli CL, Calabro-Jones PM (1987) Radiation and hydrogen peroxide induced free radical damage to DNA. Br J Cancer Suppl 8: 105-112. PubMed: 2820457.
|
[49] | Montecucco A, Biamonti G (2007) Cellular response to etoposide treatment. Cancer Lett 252: 9-18. doi:10.1016/j.canlet.2006.11.005. PubMed: 17166655.
|
[50] | Chow KC, Ross WE (1987) Topoisomerase-specific drug sensitivity in relation to cell cycle progression. Mol Cell Biol 7: 3119-3123. PubMed: 2823120.
|
[51] | Hendzel MJ, Wei Y, Mancini MA, Van Hooser A, Ranalli T et al. (1997) Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106: 348-360. doi:10.1007/s004120050256. PubMed: 9362543.
|
[52] | Yang J, Bardes ES, Moore JD, Brennan J, Powers MA et al. (1998) Control of cyclin B1 localization through regulated binding of the nuclear export factor CRM1. Genes Dev 12: 2131-2143. doi:10.1101/gad.12.14.2131. PubMed: 9679058.
|
[53] | Pines J, Hunter T (1991) Human cyclins A and B1 are differentially located in the cell and undergo cell cycle-dependent nuclear transport. J Cell Biol 115: 1-17. doi:10.1083/jcb.115.1.1. PubMed: 1717476.
|
[54] | Hajji N, Pastor N, Mateos S, Domínguez I, Cortés F (2003) DNA strand breaks induced by the anti-topoisomerase II bis-dioxopiperazine ICRF-193. Mutat Res 530: 35-46. doi:10.1016/S0027-5107(03)00135-0. PubMed: 14563529.
|
[55] | Huang KC, Gao H, Yamasaki EF, Grabowski DR, Liu S et al. (2001) Topoisomerase II poisoning by ICRF-193. J Biol Chem 276: 44488-44494. doi:10.1074/jbc.M104383200. PubMed: 11577077.
|
[56] | Roca J, Ishida R, Berger JM, Andoh T, Wang JC (1994) Antitumor bisdioxopiperazines inhibit yeast DNA topoisomerase II by trapping the enzyme in the form of a closed protein clamp. Proc Natl Acad Sci U S A 91: 1781-1785. doi:10.1073/pnas.91.5.1781. PubMed: 8127881.
|
[57] | Barreto V.Reina-San-Martin B, Ramiro AR, McBride KM, Nussenzweig MC (2003) C-terminal deletion of AID uncouples class switch recombination from somatic hypermutation and gene conversion. Mol Cell 12: 501-508.
|
[58] | Ellyard JI, Benk AS, Taylor B, Rada C, Neuberger MS (2011) The dependence of Ig class-switching on the nuclear export sequence of AID likely reflects interaction with factors additional to Crm1 exportin. Eur J Immunol 41: 485-490. doi:10.1002/eji.201041011. PubMed: 21268017.
|
[59] | Ta VT, Nagaoka H, Catalan N, Durandy A, Fischer A et al. (2003) AID mutant analyses indicate requirement for class-switch-specific cofactors. Nat Immunol 4: 843-848. doi:10.1038/ni964. PubMed: 12910268.
|
[60] | Mu Y, Prochnow C, Pham P, Chen XS, Goodman MF (2012) A structural basis for the biochemical behavior of activation-induced deoxycytidine deaminase class-switch recombination-defective hyper-IgM-2 mutants. J Biol Chem 287: 28007-28016. doi:10.1074/jbc.M112.370189. PubMed: 22715099.
|