全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Transcriptome Profiling Analysis on Whole Bodies of Microbial Challenged Eriocheir sinensis Larvae for Immune Gene Identification and SNP Development

DOI: 10.1371/journal.pone.0082156

Full-Text   Cite this paper   Add to My Lib

Abstract:

To study crab immunogenetics of individuals, newly hatched Eriocheir sinensis larvae were stimulated with a mixture of three pathogen strains (Gram-positive bacteria Micrococcus luteus, Gram-negative bacteria Vibrio alginolyticus and fungi Pichia pastoris; 108 cfu·mL-1). A total of 44,767,566 Illumina clean reads corresponding to 4.52 Gb nucleotides were generated and assembled into 100,252 unigenes (average length: 1,042 bp; range: 201-19,357 bp). 17,097 (26.09%) of 65,535 non-redundant unigenes were annotated in NCBI non-redundant protein (Nr) database. Moreover, 23,188 (35.38%) unigenes were assigned to three Gene Ontology (GO) categories, 15,071 (23.00%) to twenty-six Clusters of orthologous Groups (COG) and 8,574 (13.08%) to six Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, respectively. Numerous genes were further identified to be associated with multiple immune pathways, including Toll, immune deficiency (IMD), janus kinase (JAK)-signal transducers and activators of transcription (STAT) and mitogen-activated protein kinase (MAPK) pathways. Some of them, such as tumor necrosis factor receptor associated factor 6 (TRAF6), fibroblast growth factor (FGF), protein-tyrosine phosphatase (PTP), JNK-interacting protein 1 (JIP1), were first identified in E. sinensis. TRAF6 was even first discovered in crabs. Additionally, 49,555 single nucleotide polymorphisms (SNPs) were developed from over 13,309 unigenes. This is the first transcriptome report of whole bodies of E. sinensis larvae after immune challenge. Data generated here not only provide detail information to identify novel genes in genome reference-free E. sinensis, but also facilitate our understanding on host immunity and defense mechanism of the crab at whole transcriptome level.

References

[1]  Rudnick DA, Hieb K, Grimmer KF, Resh VH (2003) Patterns and processes of biological invasion: The Chinese mitten crab in San Francisco Bay. Basic and Applied Ecology 4: 249-262. doi:10.1078/1439-1791-00152.
[2]  Montu M, Anger K, deBakker C (1996) Larval development of the Chinese mitten crab Eriocheir sinensis H Milne-Edwards (Decapoda:Grapsidae) reared in the laboratory. Helgolander Meeresuntersuchungen 50: 223-252. doi:10.1007/BF02367153.
[3]  Jiang H, Yin Y, Zhang X, Hu S, Wang Q (2009) Chasing relationships between nutrition and reproduction: A comparative transcriptome analysis of hepatopancreas and testis from Eriocheir sinensis. Comp Biochem Physiol Part D Genomics Proteomics 4: 227-234. doi:10.1016/j.cbd.2009.05.001. PubMed: 20403758.
[4]  Zheng Y, Fang H (1998) Technique for Prevention and Treatment of Common Disease in Seed —rearing of River Crab. Shandong Fisheries 15: 31-34.
[5]  Jiang H, Cai YM, Chen LQ, Zhang XW, Hu SN et al. (2009) Functional annotation and analysis of expressed sequence tags from the hepatopancreas of mitten crab (Eriocheir sinensis). Mar Biotechnol (NY) 11: 317-326. doi:10.1007/s10126-008-9146-1. PubMed: 18815839.
[6]  Zhao D, Song S, Wang Q, Zhang X, Hu S et al. (2009) Discovery of immune-related genes in Chinese mitten crab (Eriocheir sinensis) by expressed sequence tag analysis of haemocytes. Aquaculture 287: 297-303. doi:10.1016/j.aquaculture.2008.10.050.
[7]  Mu C, Zheng P, Zhao J, Wang L, Qiu L et al. (2011) A novel type III crustin (CrusEs2) identified from Chinese mitten crab Eriocheir sinensis. Fish and Shellfish Immunol 31: 142-147.
[8]  Mu C, Zhao J, Wang L, Song L, Song X et al. (2009) A thioredoxin with antioxidant activity identified from Eriocheir sinensis. Fish Shellfish Immunol 26: 716-723. doi:10.1016/j.fsi.2009.02.024. PubMed: 19269333.
[9]  Mu C, Zhao J, Wang L, Song L, Zhang H et al. (2009) Molecular cloning and characterization of peroxiredoxin 6 from Chinese mitten crab Eriocheir sinensis. Fish Shellfish Immunol 26: 821-827. PubMed: 18992822.
[10]  Meng Q, Du J, Yao W, Xiu Y, Li Y et al. (2011) An extracellular copper/zinc superoxide dismutase (ecCuZnSOD) from Chinese mitten crab, Eriocheir sinensis and its relationship with Spiroplasma eriocheiris. Aquaculture 320: 56-61. doi:10.1016/j.aquaculture.2011.08.014.
[11]  Li C, Zhao J, Song L, Mu C, Zhang H et al. (2008) Molecular cloning, genomic organization and functional analysis of an anti-lipopolysaccharide factor from Chinese mitten crab Eriocheir sinensis. Dev Comp Immunol 32: 784-794. doi:10.1016/j.dci.2007.11.008. PubMed: 18206230.
[12]  Zhang Y, Wang L, Wang L, Yang J, Gai Y et al. (2010) The second anti-lipopolysaccharide factor (EsALF-2) with antimicrobial activity from Eriocheir sinensis. Dev Comp Immunol 34: 945-952. doi:10.1016/j.dci.2010.04.002. PubMed: 20416335.
[13]  Wang L, Zhang Y, Wang L, Yang J, Zhou Z et al. (2011) A new anti-lipopolysaccharide factor (EsALF-3) from Eriocheir sinensis with antimicrobial activity. African Journal of Biotechnology 10: 17678-17689.
[14]  Gai Y, Zhao J, Song L, Li C, Zheng P et al. (2008) A prophenoloxidase from the Chinese mitten crab Eriocheir sinensis: Gene cloning, expression and activity analysis. Fish and Shellfish Immunology 24: 156-167.
[15]  Gai Y, Qiu L, Wang L, Song L, Mu C et al. (2009) A clip domain serine protease (cSP) from the Chinese mitten crab Eriocheir sinensis: cDNA characterization and mRNA expression. Fish and Shellfish Immunol 27: 670-677.
[16]  Qin C, Chen L, Qin JG, Zhao D, Zhang H et al. (2010) Characterization of a serine proteinase homologous (SPH) in Chinese mitten crab Eriocheir sinensis. Dev Comp Immunol 34: 14-18. doi:10.1016/j.dci.2009.08.006. PubMed: 19720078.
[17]  Ekblom R, Galindo J (2011) Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity (Edinb) 107: 1-15. doi:10.1038/hdy.2010.152. PubMed: 21139633.
[18]  Cahais V, Gayral P, Tsagkogeorga G, Melo-Ferreira J, Ballenghien M et al. (2012) Reference-free transcriptome assembly in non-model animals from next-generation sequencing data. Mol Ecol Resour 12: 834-845. doi:10.1111/j.1755-0998.2012.03148.x. PubMed: 22540679.
[19]  Pereiro P, Balseiro P, Romero A, Dios S, Forn-Cuni G et al. (2012) High-Throughput Sequence Analysis of Turbot (Scophthalmus maximus) Transcriptome Using 454-Pyrosequencing for the Discovery of Antiviral Immune Genes. PLOS ONE 7: e35369. doi:10.1371/journal.pone.0035369. PubMed: 22629298.
[20]  Zhang Y, Zhang S, Han S, Li X, Qi L (2012) Transcriptome profiling and in silico analysis of somatic embryos in Japanese larch (Larix leptolepis). Plant Cell Rep 31: 1637-1657. doi:10.1007/s00299-012-1277-1. PubMed: 22622308.
[21]  Sun L, Chen M, Yang H, Wang T, Liu B et al. (2011) Large scale gene expression profiling during intestine and body wall regeneration in the sea cucumber Apostichopus japonicus. Comp Biochem Physiol Part D Genomics Proteomics 6: 195-205. doi:10.1016/j.cbd.2011.03.002. PubMed: 21501978.
[22]  Zhang F, Guo H, Zheng H, Zhou T, Zhou Y et al. (2010) Massively parallel pyrosequencing-based transcriptome analyses of small brown planthopper (Laodelphax striatellus), a vector insect transmitting rice stripe virus (RSV). BMC Genomics 11: 303. doi:10.1186/1471-2164-11-303. PubMed: 20462456.
[23]  Gavery MR, Roberts SB (2012) Characterizing short read sequencing for gene discovery and RNA-Seq analysis in Crassostrea gigas. Comp Biochem Physiol Part D Genomics Proteomics 7: 94-99. doi:10.1016/j.cbd.2011.12.003. PubMed: 22244882.
[24]  Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26: 1135-1145. doi:10.1038/nbt1486. PubMed: 18846087.
[25]  Sun X, Zhou S, Meng F, Liu S (2012) De novo assembly and characterization of the garlic (Allium sativum) bud transcriptome by Illumina sequencing. Plant Cell Rep 31: 1823-1828. doi:10.1007/s00299-012-1295-z. PubMed: 22684307.
[26]  Robinson N, Sahoo PK, Baranski M, Mahapatra KD, Saha JN et al. (2012) Expressed Sequences and Polymorphisms in Rohu Carp (Labeo rohita, Hamilton) Revealed by mRNA-seq. Mar Biotechnol (NY) 14: 620–633. doi:10.1007/s10126-012-9433-8. PubMed: 22298294.
[27]  Hsu JC, Chien TY, Hu CC, Chen MJ, Wu WJ et al. (2012) Discovery of Genes Related to Insecticide Resistance in Bactrocera dorsalis by Functional Genomic Analysis of a De Novo Assembled Transcriptome. PLOS ONE 7: e40950. doi:10.1371/journal.pone.0040950. PubMed: 22879883.
[28]  Li C, Weng S, Chen Y, Yu X, Lu L et al. (2012) Analysis of Litopenaeus vannamei Transcriptome using the Next-Generation DNA Sequencing. Technique - PLOS ONE 7: e47442. doi:10.1371/journal.pone.0047442.
[29]  Li S, Zhang X, Sun Z, Li F, Xiang J (2013) Transcriptome Analysis on Chinese Shrimp Fenneropenaeus chinensis during WSSV Acute. Infection - PLOS ONE 8: e58627. doi:10.1371/journal.pone.0058627.
[30]  Liu F, Tang T, Sun L, Jose Priya TA (2012) Transcriptomic analysis of the housefly (Musca domestica) larva using massively parallel pyrosequencing. Mol Biol Rep 39: 1927-1934. doi:10.1007/s11033-011-0939-3. PubMed: 21643958.
[31]  Vogel H, Altincicek B, Gl?ckner G, Vilcinskas A (2011) A comprehensive transcriptome and immune-gene repertoire of the lepidopteran model host Galleria mellonella. BMC Genomics 12: 308. doi:10.1186/1471-2164-12-308. PubMed: 21663692.
[32]  Wang ZL, Liu TT, Huang ZY, Wu XB, Yan WY et al. (2012) Transcriptome Analysis of the Asian Honey Bee Apis cerana cerana. PLOS ONE 7: e47954. doi:10.1371/journal.pone.0047954. PubMed: 23112877.
[33]  Li X, Cui Z, Liu Y, Song C, Shi G (2013) Transcriptome analysis and discovery of genes involved in immune pathways from hepatopancreas of microbial challenged mitten crab Eriocheir sinensis. PLOS ONE 8: e68233. doi:10.1371/journal.pone.0068233. PubMed: 23874555.
[34]  Sui L, Cai J, Sun H, Wille M, Bossier P (2012) Effect of poly-beta-hydroxybutyrate on Chinese mitten crab, Eriocheir sinensis, larvae challenged with pathogenic Vibrio anguillarum. J Fish Dis 35: 359-364. doi:10.1111/j.1365-2761.2012.01351.x. PubMed: 22417317.
[35]  Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA et al. (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29: 644-652. doi:10.1038/nbt.1883. PubMed: 21572440.
[36]  Akira S, Uematsu S, Takeuchi O (2006) Pathogen Recognition and Innate Immunity. Cell 124: 783-801. doi:10.1016/j.cell.2006.02.015. PubMed: 16497588.
[37]  Wang PH, Gu ZH, Wan DH, Zhang MY, Weng SP et al. (2011) The Shrimp NF-κB Pathway Is Activated by White Spot Syndrome Virus (WSSV) 449 to Facilitate the Expression of WSSV069 (ie1), WSSV303 and WSSV371. PLOS ONE 6(9): e24773. doi:10.1371/journal.pone.0024773. PubMed: 21931849.
[38]  Li F, Yan H, Wang D, Priya TA, Li S et al. (2009) Identification of a novel relish homolog in Chinese shrimp Fenneropenaeus chinensis and its function in regulating the transcription of antimicrobial peptides. Dev Comp Immunol 33: 1093-1101. doi:10.1016/j.dci.2009.06.001. PubMed: 19520110.
[39]  Colbourne JK, Pfrender ME, Gilbert D, Thomas WK, Tucker A et al. (2011) The ecoresponsive genome of Daphnia pulex. Science 331: 555-561. doi:10.1126/science.1197761. PubMed: 21292972.
[40]  Zhang W, Wan H, Jiang H, Zhao Y, Zhang X et al. (2011) A transcriptome analysis of mitten crab testes (Eriocheir sinensis). Genet Mol Biol 34: 136-141. doi:10.1590/S1415-47572010005000099. PubMed: 21637557.
[41]  He L, Wang Q, Jin X, Wang Y, Chen L et al. (2012) Transcriptome profiling of testis during sexual maturation stages in Eriocheir sinensis using Illumina sequencing. PLOS ONE 7: e33735. doi:10.1371/journal.pone.0033735. PubMed: 22442720.
[42]  Ou J, Meng Q, Li Y, Xiu Y, Du J et al. (2012) Identification and comparative analysis of the Eriocheir sinensis microRNA transcriptome response to Spiroplasma eriocheiris infection using a deep sequencing approach. Fish Shellfish Immunol 32: 345-352. PubMed: 22166732.
[43]  He L, Jiang H, Cao D, Liu L, Hu S et al. (2013) Comparative Transcriptome Analysis of the Accessory Sex Gland and Testis from the Chinese Mitten Crab (Eriocheir sinensis). PLOS ONE 8(1): e53915. doi:10.1371/journal.pone.0053915. PubMed: 23342039.
[44]  Xiang LX, He D, Dong WR, Zhang YW, Shao JZ (2010) Deep sequencing-based transcriptome profiling analysis of bacteria-challenged Lateolabrax japonicus reveals insight into the immune-relevant genes in marine fish. BMC Genomics 11: 472. doi:10.1186/1471-2164-11-472. PubMed: 20707909.
[45]  Yuan S, Liu T, Huang S, Wu T, Huang L et al. (2009) Genomic and functional uniqueness of the TNF receptor-associated factor gene family in amphioxus, the basal chordate. J Immunol 183: 4560-4568. doi:10.4049/jimmunol.0901537. PubMed: 19752230.
[46]  Wang PH, Wan DH, Gu ZH, Deng XX, Weng SP et al. (2011) Litopenaeus vannamei tumor necrosis factor receptor-associated factor 6 (TRAF6) responds to Vibrio alginolyticus and white spot syndrome virus (WSSV) infection and activates antimicrobial peptide genes. Dev Comp Immunol 35: 105-114. doi:10.1016/j.dci.2010.08.013. PubMed: 20816892.
[47]  Wei J, Yuan Y, Jin C, Chen H, Leng L et al. (2012) The ubiquitin ligase TRAF6 negatively regulates the JAK-STAT signaling pathway by binding to STAT3 and mediating its ubiquitination. PLOS ONE 7: e49567. doi:10.1371/journal.pone.0049567. PubMed: 23185365.
[48]  Kurokawa S, Kabayama J, Hwang SD, Nho SW, Hikima J et al. (2013) Comparative Genome Analysis of Fish and Human Isolates of Mycobacterium marinum. Mar Biotechnol (NY) 15: 596-605. doi:10.1007/s10126-013-9511-6. PubMed: 23728847.
[49]  Deák T, Kupi T, Oláh R, Lakatos L, Kemény L et al. (2013) Candidate plant gene homologues in grapevine involved in Agrobacterium transformation. Central European. Journal of Biology 8: 1001-1009.
[50]  Zheng W, Peng T, He W, Zhang H (2012) High-Throughput Sequencing to Reveal Genes Involved in Reproduction and Development in Bactrocera dorsalis (Diptera_ Tephritidae). PLOS ONE 7: e36463. doi:10.1371/journal.pone.0036463. PubMed: 22570719.
[51]  Pascual L, Jakubowska AK, Blanca JM, Ca?izares J, Ferré J et al. (2012) The transcriptome of Spodoptera exigua larvae exposed to different types of microbes. Insect Biochem Mol Biol 42: 557-570. doi:10.1016/j.ibmb.2012.04.003. PubMed: 22564783.
[52]  Liu S, Zhou Z, Lu J, Sun F, Wang S et al. (2011) Generation of genome-scale gene-associated SNPs in catfish for the construction of a high-density SNP array. BMC Genomics 12: 53. doi:10.1186/1471-2164-12-53. PubMed: 21255432.
[53]  Lu T, Lu G, Fan D, Zhu C, Li W et al. (2010) Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq. Genome Res 20: 1238-1249. doi:10.1101/gr.106120.110. PubMed: 20627892.
[54]  Sze SH, Dunham JP, Carey B, Chang PL, Li F et al. (2012) A de novo transcriptome assembly of Lucilia sericata (Diptera: Calliphoridae) with predicted alternative splices, single nucleotide polymorphisms and transcript expression estimates. Insect Mol Biol 21: 205-221. doi:10.1111/j.1365-2583.2011.01127.x. PubMed: 22283785.
[55]  Jung H, Lyons RE, Dinh H, Hurwood DA, McWilliam S et al. (2011) Transcriptomics of a Giant Freshwater Prawn (Macrobrachium rosenbergii): De Novo Assembly, Annotation and Marker Discovery. PLOS ONE 6: e27938. doi:10.1371/journal.pone.0027938. PubMed: 22174756.
[56]  Liu C, Wang X, Xiang J, Li F (2012) EST-derived SNP discovery and selective pressure analysis in Pacific white shrimp (Litopenaeus vannamei). Chinese Journal of Oceanology and Limnology 30: 713-723. doi:10.1007/s00343-012-1252-2.
[57]  Zheng LP, Hou L, Yu M, Li X, Zou XY (2012) Cloning and the expression pattern of Spa¨tzle gene during embryonic development and bacterial challenge in Artemia sinica. Mol Biol Rep 39: 6035–6042. doi:10.1007/s11033-011-1417-7. PubMed: 22203485.
[58]  Wang PH, Liang JP, Gu ZH, Wan DH, Weng SP et al. (2012) Molecular cloning, characterization and expression analysis of two novel Tolls (LvToll2 and LvToll3) and three putative Spatzle-like Toll ligands (LvSpz1-3) from Litopenaeus vannamei. Dev Comp Immunol 36: 359-371. doi:10.1016/j.dci.2011.07.007. PubMed: 21827783.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133