全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Differential Gene Expression of Cardiac Ion Channels in Human Dilated Cardiomyopathy

DOI: 10.1371/journal.pone.0079792

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Dilated cardiomyopathy (DCM) is characterized by idiopathic dilation and systolic contractile dysfunction of the cardiac chambers. The present work aimed to study the alterations in gene expression of ion channels involved in cardiomyocyte function. Methods and Results Microarray profiling using the Affymetrix Human Gene? 1.0 ST array was performed using 17 RNA samples, 12 from DCM patients undergoing cardiac transplantation and 5 control donors (CNT). The analysis focused on 7 cardiac ion channel genes, since this category has not been previously studied in human DCM. SCN2B was upregulated, while KCNJ5, KCNJ8, CLIC2, CLCN3, CACNB2, and CACNA1C were downregulated. The RT-qPCR (21 DCM and 8 CNT samples) validated the gene expression of SCN2B (p < 0.0001), KCNJ5 (p < 0.05), KCNJ8 (p < 0.05), CLIC2 (p < 0.05), and CACNB2 (p < 0.05). Furthermore, we performed an IPA analysis and we found a functional relationship between the different ion channels studied in this work. Conclusion This study shows a differential expression of ion channel genes involved in cardiac contraction in DCM that might partly underlie the changes in left ventricular function observed in these patients. These results could be the basis for new genetic therapeutic approaches.

References

[1]  Taylor MR, Carniel E, Mestroni L (2006) Cardiomyopathy, familial dilated. Orphanet J Rare Dis 1: 27. doi:10.1186/1750-1172-1-27. PubMed: 16839424.
[2]  Jefferies JL, Towbin JA (2010) Dilated cardiomyopathy. Lancet 375: 752-762. doi:10.1016/S0140-6736(09)62023-7. PubMed: 20189027.
[3]  Elliott P, Andersson B, Arbustini E, Bilinska Z, Cecchi F et al. (2008) Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 29: 270-276. PubMed: 17916581.
[4]  Ord?g B, Brutyó E, Puskás LG, Papp JG, Varró A et al. (2006) Gene expression profiling of human cardiac potassium and sodium channels. Int J Cardiol 111: 386-393. doi:10.1016/j.ijcard.2005.07.063. PubMed: 16257073.
[5]  Balse E, Steele DF, Abriel H, Coulombe A, Fedida D et al. (2012) Dynamic of ion channel expression at the plasma membrane of cardiomyocytes. Physiol Rev 92: 1317-1358. doi:10.1152/physrev.00041.2011. PubMed: 22811429.
[6]  Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415: 198-205. doi:10.1038/415198a. PubMed: 11805843.
[7]  Cortés R, Rivera M, Roselló-Lletí E, Martínez-Dolz L, Almenar L et al. (2012) Differences in MEF2 and NFAT transcriptional pathways according to human heart failure aetiology. PLOS ONE 7: e30915. doi:10.1371/journal.pone.0030915. PubMed: 22363514.
[8]  B?rjesson SI, Elinder F (2008) Structure, function, and modification of the voltage sensor in voltage-gated ion channels. Cell Biochem Biophys 52: 149-174. doi:10.1007/s12013-008-9032-5. PubMed: 18989792.
[9]  Bers DM, Pogwizd SM, Schlotthauer K (2002) Upregulated Na/Ca exchange is involved in both contractile dysfunction and arrhythmogenesis in heart failure. Basic Res Cardiol 97 Suppl 1: I36-I42. PubMed: 12479232.
[10]  Catterall WA (1988) Structure and function of voltage-sensitive ion channels. Science 242: 50-61. doi:10.1126/science.2459775. PubMed: 2459775.
[11]  Catterall WA (2000) Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 16: 521-555. doi:10.1146/annurev.cellbio.16.1.521. PubMed: 11031246.
[12]  Catterall WA (2000) From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26: 13-25. doi:10.1016/S0896-6273(00)81133-2. PubMed: 10798388.
[13]  Macrae DJ (2007) The Council for International Organizations and Medical Sciences (CIOMS) guidelines on ethics of clinical trials. Proc Am Thorac Soc 4: 176-179. doi:10.1513/pats.200701-011GC. PubMed: 17494727.
[14]  Swedberg K, Cleland J, Dargie H, Drexler H, Follath F et al. (2005) Guidelines for the diagnosis and treatment of chronic heart failure: executive summary (update 2005): The Task Force for the Diagnosis and Treatment of Chronic Heart Failure of the European Society of Cardiology. Eur Heart J 26: 1115-1140. doi:10.1093/eurheartj/ehi204. PubMed: 15901669.
[15]  Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4: 44-57. PubMed: 19131956.
[16]  K??b S, Dixon J, Duc J, Ashen D, N?bauer M et al. (1998) Molecular basis of transient outward potassium current downregulation in human heart failure: a decrease in Kv 4.3 mRNA correlates with a reduction in current density. Circulation 98: 1383-1393. doi:10.1161/01.CIR.98.14.1383. PubMed: 9760292.
[17]  Partemi S, Batlle M, Berne P, Berruezo A, Campos B et al. (2013) Analysis of the arrhythmogenic substrate in human heart failure. Cardiovasc Pathol 22: 133-140. doi:10.1016/j.carpath.2012.07.003. PubMed: 23036686.
[18]  Mercadier JJ, Lompré AM, Duc P, Boheler KR, Fraysse JB et al. (1990) Altered Sarcoplasmic Reticulum Ca2+-ATPase Gene Expression in the Human Ventricle during End-Stage. Heart Failure - J Clin Invest 85: 305-309.
[19]  Dally S, Bredoux R, Corvazier E, Andersen JP, Clausen JD et al. (2006) Ca2+-ATPases in non-failing and failing heart: evidence for a novel cardiac sarco/endoplasmic reticulum Ca2+-ATPase 2 isoform (SERCA2c). Biochem J 395: 249–258. doi:10.1042/BJ20051427. PubMed: 16402920.
[20]  Arai M, Alpert NR, MacLennan DH, Barton P, Periasamy M (1993) Alterations in sarcoplasmic reticulum gene expression in human heart failure. A possible mechanism for alterations in systolic and diastolic properties of the failing myocardium. Circ Res 72: 463-469. doi:10.1161/01.RES.72.2.463. PubMed: 8418995.
[21]  Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408. doi:10.1006/meth.2001.1262. PubMed: 11846609.
[22]  Winters AL, Minchin FR (2005) Modification of the Lowry assay to measure proteins and phenols in covalently bound complexes. Anal Biochem 346: 43-48. doi:10.1016/j.ab.2005.07.041. PubMed: 16197913.
[23]  Szmit S, Jank M, Maciejewski H, Grabowski M, Glowczynska R et al. (2010) Gene expression profiling in peripheral blood nuclear cells in patients with refractory ischaemic end-stage heart failure. J Appl Genet 51: 353-368. doi:10.1007/BF03208866. PubMed: 20720311.
[24]  Barth AS, Kumordzie A, Frangakis C, Margulies KB, Cappola TP et al. (2011) Reciprocal transcriptional regulation of metabolic and signaling pathways correlates with disease severity in heart failure. Circ Cardiovasc Genet 4: 475-483. doi:10.1161/CIRCGENETICS.110.957571. PubMed: 21828333.
[25]  Ivandic BT, Mastitsky SE, Sch?nsiegel F, Bekeredjian R, Eils R et al. (2012) Whole-genome analysis of gene expression associates the ubiquitin-proteasome system with the cardiomyopathy phenotype in disease-sensitized congenic mouse strains. Cardiovasc Res 94: 87-95. doi:10.1093/cvr/cvs080. PubMed: 22308238.
[26]  Prat-Vidal C, Gálvez-Montón C, Nonell L, Puigdecanet E, Astier L et al. (2013) Identification of temporal and region-specific myocardial gene expression patterns in response to infarction in Swine. PLOS ONE 8: e54785. doi:10.1371/journal.pone.0054785. PubMed: 23372767.
[27]  Kim JI, Kim IK (2012) Probing regulatory proteins for vascular contraction by deoxyribonucleic Acid microarray. Korean Circ J 42: 479-486. doi:10.4070/kcj.2012.42.7.479. PubMed: 22870082.
[28]  Zhou Y, Gong B, Kaminski HJ (2012) Genomic profiling reveals Pitx2 controls expression of mature extraocular muscle contraction-related genes. Invest Ophthalmol Vis Sci 53: 1821-1829. doi:10.1167/iovs.12-9481. PubMed: 22408009.
[29]  Dasgupta T, Stillwagon SJ, Ladd AN (2013) Gene expression analyses implicate an alternative splicing program in regulating contractile gene expression and serum response factor activity in mice. PLOS ONE 8: e56590. doi:10.1371/journal.pone.0056590. PubMed: 23437181.
[30]  Ambrosi CM, Yamada KA, Nerbonne JM, Efimov IR (2013) Gender differences in electrophysiological gene expression in failing and non-failing human hearts. PLOS ONE 8: e54635. doi:10.1371/journal.pone.0054635. PubMed: 23355885.
[31]  Walmsley J, Rodriguez JF, Mirams GR, Burrage K, Efimov IR et al. (2013) mRNA expression levels in failing human hearts predict cellular electrophysiological remodeling: A population- based simulation study. PLOS ONE 8: e56359. doi:10.1371/journal.pone.0056359. PubMed: 23437117.
[32]  Morgan JP, Erny RE, Allen PD, Grossman W, Gwathmey JK (1990) Abnormal intracellular calcium handling, a major cause of systolic and diastolic dysfunction in ventricular myocardium from patients with heart failure. Circulation 81: III21-32.
[33]  Zhang HB, Li RC, Xu M, Xu SM, Lai YS et al. (2013) Ultrastructural uncoupling between T-tubules and sarcoplasmic reticulum in human heart failure. Cardiovasc Res 98: 269-270. doi:10.1093/cvr/cvt030. PubMed: 23405000.
[34]  Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D et al. (2006) Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 113: 1807-1816. doi:10.1161/CIRCULATIONAHA.106.174287. PubMed: 16567565.
[35]  Fatkin D (2011) Guidelines for the diagnosis and management of familial dilated cardiomyopathy. Heart Lung Circ 20: 691-693. doi:10.1016/j.hlc.2011.07.008. PubMed: 21885340.
[36]  Isom LL (2001) Sodium channel beta subunits: anything but auxiliary. Neuroscientist 7: 42-54. doi:10.1177/107385840100700108. PubMed: 11486343.
[37]  Dhar Malhotra J, Chen C, Rivolta I, Abriel H, Malhotra R et al. (2001) Characterization of sodium channel alpha- and beta-subunits in rat and mouse cardiac myocytes. Circulation 103: 1303-1310. doi:10.1161/01.CIR.103.9.1303. PubMed: 11238277.
[38]  Zicha S, Maltsev VA, Nattel S, Sabbah HN, Undrovinas AI (2004) Post-transcriptional alterations in the expression of cardiac sodium channel subunits in chronic heart failure. J Mol Cell Cardiol 37: 91-100. doi:10.1016/j.yjmcc.2004.04.003. PubMed: 15242739.
[39]  Ufret-Vincenty CA, Baro DJ, Lederer WJ, Rockman HA, Quinones LE et al. (2001) Role of sodium channel deglycosylation in the genesis of cardiac arrhythmias in heart failure. J Biol Chem 276: 28197-28203. doi:10.1074/jbc.M102548200. PubMed: 11369778.
[40]  Nobles M, Sebastian S, Tinker A (2010) HL-1 cells express an inwardly rectifying K+ current activated via muscarinic receptors comparable to that in mouse atrial myocytes. Pflugers Arch 460: 99-108. doi:10.1007/s00424-010-0799-z. PubMed: 20186548.
[41]  Hedin KE, Lim NF, Clapham DE (1996) Cloning of a Xenopus laevis inwardly rectifying K+ channel subunit that permits GIRK1 expression of IKACh currents in oocytes. Neuron 16: 423-429. doi:10.1016/S0896-6273(00)80060-4. PubMed: 8789957.
[42]  Cui Y, Giblin JP, Clapp LH, Tinker A (2001) A mechanism for ATP-sensitive potassium channel diversity: Functional coassembly of two pore-forming subunits. Proc Natl Acad Sci U S A 98: 729-734. doi:10.1073/pnas.98.2.729. PubMed: 11136227.
[43]  Kane GC, Lam CF, O'Cochlain F, Hodgson DM, Reyes S et al. (2006) Gene knockout of the KCNJ8-encoded Kir6.1 K(ATP) channel imparts fatal susceptibility to endotoxemia. FASEB J 20: 2271-2280. doi:10.1096/fj.06-6349com. PubMed: 17077304.
[44]  Cromer BA, Gorman MA, Hansen G, Adams JJ, Coggan M et al. (2007) Structure of the Janus protein human CLIC2. J Mol Biol 374: 719-731. doi:10.1016/j.jmb.2007.09.041. PubMed: 17945253.
[45]  Dulhunty AF, Pouliquin P, Coggan M, Gage PW, Board PG (2005) A recently identified member of the glutathione transferase structural family modifies cardiac RyR2 substate activity, coupled gating and activation by Ca2+ and ATP. Biochem J 390: 333-343. doi:10.1042/BJ20042113. PubMed: 15916532.
[46]  Dulhunty AF, Hewawasam R, Liu D, Casarotto MG, Board PG (2011) Regulation of the cardiac muscle ryanodine receptor by glutathione transferases. Drug Metab Rev 43: 236-252. doi:10.3109/03602532.2010.549134. PubMed: 21323602.
[47]  Jalilian C, Gallant EM, Board PG, Dulhunty AF (2008) Redox potential and the response of cardiac ryanodine receptors to CLIC-2, a member of the glutathione S-transferase structural family. Antioxid Redox Signal 10: 1675-1686. doi:10.1089/ars.2007.1994. PubMed: 18522493.
[48]  Takano K, Liu D, Tarpey P, Gallant E, Lam A et al. (2012) An X-linked channelopathy with cardiomegaly due to a CLIC2 mutation enhancing ryanodine receptor channel activity. Hum Mol Genet 21: 4497-4507. doi:10.1093/hmg/dds292. PubMed: 22814392.
[49]  Chien AJ, Carr KM, Shirokov RE, Rios E, Hosey MM (1996) Identification of palmitoylation sites within the L-type calcium channel beta2a subunit and effects on channel function. J Biol Chem 271: 26465-26468. doi:10.1074/jbc.271.43.26465. PubMed: 8900112.
[50]  Yamaguchi H, Okuda M, Mikala G, Fukasawa K, Varadi G (2000) Cloning of the beta(2a) subunit of the voltage-dependent calcium channel from human heart: cooperative effect of alpha(2)/delta and beta(2a) on the membrane expression of the alpha(1C) subunit. Biochem Biophys Res Commun 267: 156-163. doi:10.1006/bbrc.1999.1926. PubMed: 10623591.
[51]  Antzelevitch C, Pollevick GD, Cordeiro JM, Casis O, Sanguinetti MC et al. (2007) Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation 115: 442-449. doi:10.1161/CIRCULATIONAHA.106.668392. PubMed: 17224476.
[52]  Cordeiro JM, Marieb M, Pfeiffer R, Calloe K, Burashnikov E et al. (2009) Accelerated inactivation of the L-type calcium current due to a mutation in CACNB2b underlies Brugada syndrome. J Mol Cell Cardiol 46: 695-703. doi:10.1016/j.yjmcc.2009.01.014. PubMed: 19358333.
[53]  Hu D, Barajas-Martinez H, Nesterenko VV, Pfeiffer R, Guerchicoff A et al. (2010) Dual variation in SCN5A and CACNB2b underlies the development of cardiac conduction disease without Brugada syndrome. Pacing Clin Electrophysiol 33: 274-285. doi:10.1111/j.1540-8159.2009.02642.x. PubMed: 20025708.
[54]  Deschênes I, Armoundas AA, Jones SP, Tomaselli GF (2008) Post-transcriptional gene silencing of KChIP2 and Navbeta1 in neonatal rat cardiac myocytes reveals a functional association between Na and Ito currents. J Mol Cell Cardiol 45: 336-346. doi:10.1016/j.yjmcc.2008.05.001. PubMed: 18565539.
[55]  Bidaud I, Mezghrani A, Swayne LA, Monteil A, Lory P (2006) Voltage-gated calcium channels in genetic diseases. Biochim Biophys Acta 1763: 1169-1174. doi:10.1016/j.bbamcr.2006.08.049. PubMed: 17034879.
[56]  Arikkath J, Campbell KP (2003) Auxiliary subunits: essential components of the voltage-gated calcium channel complex. Curr Opin Neurobiol 13: 298-307. doi:10.1016/S0959-4388(03)00066-7. PubMed: 12850214.
[57]  Ebert AM, McAnelly CA, Handschy AV, Mueller RL, Horne WA et al. (2008) Genomic organization, expression, and phylogenetic analysis of Ca2+ channel beta4 genes in 13 vertebrate species. Physiol Genomics 35: 133-144. doi:10.1152/physiolgenomics.90264.2008. PubMed: 18682574.
[58]  Weiss N, Sandoval A, Kyonaka S, Felix R, Mori Y et al. (2011) Rim1 modulates direct G-protein regulation of Ca(v)2.2 channels. Pflugers Arch 461: 447-459. doi:10.1007/s00424-011-0926-5. PubMed: 21331761.
[59]  Board PG, Coggan M, Watson S, Gage PW, Dulhunty AF (2004) CLIC-2 modulates cardiac ryanodine receptor Ca2+ release channels. Int J Biochem Cell Biol 36: 1599-1612. doi:10.1016/j.biocel.2004.01.026. PubMed: 15147738.
[60]  Sacher M, Kim YG, Lavie A, Oh BH, Segev N (2008) The TRAPP complex: insights into its architecture and function. Traffic 9: 2032-2042. doi:10.1111/j.1600-0854.2008.00833.x. PubMed: 18801063.
[61]  Yang B, Kumar S (2010) Nedd4 and Nedd4-2: closely related ubiquitin-protein ligases with distinct physiological functions. Cell Death Differ 17: 68-77. doi:10.1038/cdd.2009.84. PubMed: 19557014.
[62]  Rougier JS, van Bemmelen MX, Bruce MC, Jespersen T, Gavillet B et al. (2005) Molecular determinants of voltage-gated sodium channel regulation by the Nedd4/Nedd4-like proteins. Am J Physiol Cell Physiol 288: C692-C701. PubMed: 15548568.
[63]  Van Bemmelen MX, Rougier JS, Gavillet B, Apothéloz F, Daidié D et al. (2004) Cardiac voltage-gated sodium channel Nav1.5 is regulated by Nedd4-2 mediated ubiquitination. Circ Res 95: 284-291. doi:10.1161/01.RES.0000136816.05109.89. PubMed: 15217910.
[64]  Mia S, Munoz C, Pakladok T, Siraskar G, Voelkl J et al. (2012) Downregulation of Kv1.5 K channels by the AMP-activated protein kinase. Cell Physiol Biochem 30: 1039-1050. doi:10.1159/000341480. PubMed: 23221389.
[65]  Cortés R, Roselló-Lletí E, Rivera M, Martínez-Dolz L, Salvador A et al. (2010) Influence of heart failure on nucleocytoplasmic transport in human cardiomyocytes. Cardiovasc Res 85: 464-472. doi:10.1093/cvr/cvp336. PubMed: 19819881.
[66]  Cortés R, Rivera M, Roselló-Lletí E, Martínez-Dolz L, Almenar L et al. (2012) Differences in MEF2 and NFAT transcriptional pathways according to human heart failure aetiology. PLOS ONE 7: e30915. doi:10.1371/journal.pone.0030915. PubMed: 22363514.
[67]  Roselló-Lletí E, Rivera M, Cortés R, Azorín I, Sirera R et al. (2012) Influence of heart failure on nucleolar organization and protein expression in human hearts. Biochem Biophys Res Commun 418: 222-228. doi:10.1016/j.bbrc.2011.12.151. PubMed: 22244875.
[68]  Tarazón E, Rivera M, Roselló-Lletí E, Molina-Navarro MM, Sánchez-Lázaro IJ et al. (2012) Heart failure induces significant changes in human pore complex of human cardiomyocytes. PLOS ONE 7: e48957. doi:10.1371/journal.pone.0048957. PubMed: 23152829.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133