IgA nephropathy is the most common cause of primary glomerulonephritis. There are different pathologic biopsy-based scoring systems in use, but there is no consensus among nephrologists yet regarding the best classification method. Our aim was to test urine proteomics as a non-invasive method for classification of IgA nephropathy. This aim was pursued by discovering novel prognostic protein biomarkers in urine, and linking them to pathogenesis of the disease through known signaling and metabolic pathways. 13 urine samples of the patients with biopsy-proven IgA nephropathy were analyzed via two proteomics approaches: nanoflow LC-MS/MS and GeLC-MS/MS. The results of label-free quantification were subjected to multivariate statistical analysis, which could classify patients into two groups, broadly corresponding to the primary and advance stages. The proteome classification correlated well with biopsy-based scoring systems, especially endocapillary hypercellularity score of the Oxford’s classification. Differentially excreted candidate proteins were found as potential prognostic biomarkers: afamin, leucine-rich alpha-2-glycoprotein, ceruloplasmin, alpha-1-microgolbulin, hemopexin, apolipoprotein A-I, complement C3, vitamin D-binding protein, beta-2-microglobulin, and retinol-binding protein 4. Pathway analysis suggested impairment of Extra Cellular Matrix (ECM)-Receptor Interaction pathways as well as activation of complement and coagulation pathway in progression of IgA nephropathy.
References
[1]
Barratt J, Feehally J (2005) IgA nephropathy. J Am Soc Nephrol 16: 2088-2097. doi:10.1681/ASN.2005020134. PubMed: 15930092.
[2]
D’Amico G (2004) Natural history of idiopathic IgA nephropathy and factors predictive of disease outcome. Semin Nephrol 24: 179–196. doi:10.1016/j.semnephrol.2004.01.001. PubMed: 15156525.
[3]
Hsu SI, Ramirez SB, Winn MP, Bonventre JV, Owen WF (2000) Evidence for genetic factors in the development and progression of IgA nephropathy. Kidney Int 57: 1818–1835. PubMed: 10792601.
[4]
Rauta V, Finne P, Fagerudd J, Rosenl?f K, T?rnroth T et al. (2002) Factors associated with progression of IgA nephropathy are related to renal function—A model for estimating risk of progression in mild disease. Clin Nephrol 58: 85–94. doi:10.5414/CNP58085. PubMed: 12227693.
[5]
Haas M (1997) Histologic subclassification of IgA nephropathy: a clinicopathologic study of 244 cases. Am J Kidney Dis 29: 829-842. doi:10.1016/S0272-6386(97)90456-X. PubMed: 9186068.
[6]
Lee HS, Lee MS, Lee SM, Lee SY, Lee ES et al. (2005) Histological grading of IgA nephropathy predicting renal outcome: revisiting H. S. Lee's glomerular grading system. Nephrol Dial Transplant 20: 342-348. doi:10.1093/ndt/gfh633. PubMed: 15618239.
[7]
Cattran DC, Coppo R, Cook HT,?Feehally J,?Roberts IS et al. (2009) The Oxford classification of IgA nephropathy: rationale, clinicopathological correlations, and classification. Kidney Int 76: 534-545. doi:10.1038/ki.2009.243. PubMed: 19571791.
[8]
Roberts IS, Cook HT, Troyanov S,?Alpers CE, Amore A et al. (2009) The Oxford classification of IgA nephropathy: pathology definitions, correlations, and reproducibility. Kidney Int 76: 546-556. doi:10.1038/ki.2009.168. PubMed: 19571790.
[9]
Shi SF, Wang SX, Jiang L, Lv JC, Liu LJ et al. (2011) Pathologic Predictors of Renal Outcome and Therapeutic Efficacy in IgA Nephropathy: Validation of the Oxford Classification. Clin J Am Soc Nephrol 6: 2175–2184. doi:10.2215/CJN.11521210. PubMed: 21852672.
[10]
Lee H, Yi SH, Seo MS, Hyun JN, Jeon JS et al. (2012) Validation of the Oxford Classification of Iga Nephropathy: A Single-Center Study in Korean Adults. Korean J Intern Med 27: 293-300. doi:10.3904/kjim.2012.27.3.293. PubMed: 23019394.
[11]
Herzenberg AM, Fogo AB, Reich HN, Troyanov S,?Bavbek N et al. (2011) Validation of the oxford classification of IgA nephropathy. Kidney Int 80: 310–317. doi:10.1038/ki.2011.126. PubMed: 21544062.
[12]
Alamartine E, Sauron C, Laurent B, Sury A, Seffert A et al. (2011) The Use of the oxford classification of IgA nephropathy to predict renal survival. Clin J Am Soc Nephrol 6: 2384–2388. doi:10.2215/CJN.01170211. PubMed: 21885791.
[13]
Troyanov S, Fervenza FC (2011) Validating the oxford classification of IgA nephropathy. Clin J Am Soc Nephrol?6: 2335-2336. doi:10.2215/CJN.08440811. PubMed: 21979911.
[14]
Kistler AD, Serra AL, Siwy J, Poster D, Krauer F et al. (2013) Urinary proteomic biomarkers for diagnosis and risk stratification of autosomal dominant. PLOS ONE?8: e53016. doi:10.1371/journal.pone.0053016. PubMed: 23326375.
[15]
Nagaraj N, Mann M (2011) Quantitative analysis of the intra- and inter-individual variability of the normal urinary proteome. J Proteome Res 10 : 637-645. doi:10.1021/pr100835s. PubMed: 21126025.
[16]
Rappsilber J, Ishihama Y, Mann M (2003) Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem 75: 663–670. doi:10.1021/ac026117i. PubMed: 12585499.
[17]
Lindén M, Lind SB, Mayrhofer C, ?Segersten U, Wester K et al. (2012) Proteomics analysis of urinary biomarker candidates for nunmuscle invasive bladder cancer. Proteomics 12: 135-144. doi:10.1002/pmic.201000810. PubMed: 22065568.
[18]
Geladi P, Esbensen K (1991) Regression on multivariate images principal component regression for modeling, prediction and visual diagnostic-tools. J Chemometr 5: 97–111. doi:10.1002/cem.1180050206.
[19]
Wold S, Jonsson J, Sjostrom M, Sandberg M, Rannar S (1993) DNA and peptide sequences and chemical processes multivariately modeled by principal component analysis and partial least-Squares projections to latent structures. Anal Chim Acta 277: 239–253. doi:10.1016/0003-2670(93)80437-P.
[20]
Stella C, Beckwith-Hall B, Cloarec O, Holmes E, Lindon JC et al. (2006)?Susceptibility of human metabolic phenotypes to dietary modulation.?J Proteome Res 5: 2780-2788. doi:10.1021/pr060265y. PubMed: 17022649.
[21]
Sampson DL, Parker TJ, Upton Z, Hurst CP (2011) A comparison of methods for classifying clinical samples based on proteomics data: A case study for statistical and machine learning approaches. PLOS ONE 6: e24973. doi:10.1371/journal.pone.0024973. PubMed: 21969867.
[22]
Dennis GJr, Sherman BT, Hosack DA, Yang J,?Gao W et al. (2003) DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol 4: 3. doi:10.1186/gb-2003-4-5-p3.
[23]
Hosack DA, Dennis GJr, Sherman BT, Lane HC, Lempicki RA (2003) Identifying biological themes within lists of genes with EASE. Genome Biol 4: R70. doi:10.1186/gb-2003-4-10-r70. PubMed: 14519205.
[24]
Chornoguz O,? Grmai L,?Sinha P, Artemenko KA,? Zubarevand. Ra et al . (2011) Proteomic pathway analysis reveals inflammation increases myeloid-derived suppressor cell resistance to apoptosis. Mol Cell Proteomics 10: M110: 002980. PubMed: 21191032.
[25]
Raana G, Khurhsid R, Rasheed A, Aftab ML (2009) Clinical significance and prognostic value of low molecular weight `tubular` protein, apha-1-acid glycoprotein in diabetes, Pak. J Physiol 5: 34-36.
[26]
Bazzi C (2003) Composition of proteinuria in primary glomerulonephritides: association with tubolo-interstitial damage, outcome and response to therapy. G Ital Nefrol 20: 346-355. PubMed: 14523895.
[27]
Geladi P, Kowalski B (1986) Partial leastsquares regression: A tutorial. Anal Chim Acta 185: 1-17. doi:10.1016/0003-2670(86)80028-9.
[28]
Li SM, Yan JX, Yang L (2006) Effect of astragalus injection on renal tubular function in patients with IgA nephropathy. Zhonqquo Zhonq Xi Yi. ; He Za Jie Zhi 26: 504-507.
[29]
Woo KT, Lau YK, Lee GSL, Wong KS,?Wei SS et al. (1997) Pattern of proteinuria in IgA nephropathy. Nephrol 3: 31-34. doi:10.1111/j.1440-1797.1997.tb00185.x.
[30]
Woo KT, Tan YO, Yap HK, Lau YK, Tay JS et al. (1981) Beta-2-microglobulin in mesengial IgA nephropathy. Nephron 37: 78-81.
[31]
Allhorn M, Bergg?rd T, Nordberg J, Olsson ML, Akerstr?m B (2002) Processing of lipocalin alpha(1)-microglobulin by hemoglobin induces heme-binding and heme-degradation properties. Blood 99: 1894-1901. doi:10.1182/blood.V99.6.1894. PubMed: 11877257.
[32]
Lundberg S, Gunnarsson I, Jacobson SH (2012) Impact of the apolipoprotein B/apolipoprotein A-I ratio on renal outcome in immunoglobulin A nephropathy. Scand J Urol Nephrol 46: 148–155. doi:10.3109/00365599.2011.644635. PubMed: 22214235.
[33]
Wang JJ, Yao XD, Zhang YY (1998) Detection of serum and urinary lipoprotein a in patients with renal disease. Nephrol 4: 27-30. doi:10.1046/j.1440-1797.1998.d01-2.x.
[34]
Rao PV, Lu X, Standley M, Pattee P, Neelima G et al. (2007) Proteomic identification of urinary biomarkers of diabetic nephropathy. Diabetes Care 30: 629–637. doi:10.2337/dc06-2056. PubMed: 17327332.
[35]
Julian BA, Wittke S, Novak J, Good DM, Coon JJ et al. (2007) Electrophoretic methods for analysis of urinary polypeptides in IgA-associated renal diseases. Electrophoresis 28: 4469–4483. doi:10.1002/elps.200700237. PubMed: 18004714.
[36]
Luczak M, Formanowicz D, Pawliczak E, Wanic-Kossowska M, Wykretowicz A et al. (2011) Chronic kidney disease-related atherosclerosis - proteomic studies of blood plasma. Proteome Sci 9: 25. doi:10.1186/1477-5956-9-25. PubMed: 21569504.
[37]
Boes E, Fliser D, Ritz E,?K?nig P,?Lhotta K et al. (2006) Apolipoprotein A IV- predicts progression of chronic kidney disease: the mild to moderate kidney disease study. J Am Soc Nephrol 17: 528-536. doi:10.1681/ASN.2005070733. PubMed: 16382017.
[38]
Kronenberg F (2009) Emerging risk factors and markers of chronic kidney disease progression. Nat Rev Nephrol 5: 677–689. doi:10.1038/nrneph.2009.173. PubMed: 19935815.
[39]
Lingenhel A, Lhotta K, Neyer U, Heid IM, Rantner B (2006) Role of the kidney in the metabolism of apolipoprotein A-IV: influence of the type of proteinuria. J Lipid Res 47: 2071–2079. doi:10.1194/jlr.M600178-JLR200. PubMed: 16788210.
[40]
Roos A, Rastaldi MP, Calvaresi N, Oortwijn BD,?Schlagwein N et al. (2006) Glomerular activation of the lectin pathway of complement in IgA nephropathy is associated with more severe renal disease. J Am Soc Nephrol 17: 1724–1734. doi:10.1681/ASN.2005090923. PubMed: 16687629.
[41]
Onda K, Ohsawa I, Ohi H, Tamano M,?Mano S et al. (2011) Excretion of complement proteins and its activation marker C5b-9 in IgA nephropathy in relation to renal function. BMC Nephrol 12: 64. doi:10.1186/1471-2369-12-64. PubMed: 22111871.
[42]
Vivekanandan-Giri A, Slocum JL, Buller CL, Basrur V, Ju W, et al. (2011) Urine glycoprotein profile reveals novel markers for chronic kidney disease. Int J Proteomics 2011: 214715.
[43]
Jackson D, Craven RA, Hutson RC, Graze I, Lueth P et al. (2007) Proteomic profiling identifies afamin as a potential biomarker for ovarian cancer. Clin Cancer Res 13: 7370-7379. doi:10.1158/1078-0432.CCR-07-0747. PubMed: 18094419.
[44]
Suzuki M, Ross GF, Wiers K, Nelson S, Bennett M et al. (2007) Identi?cation of a urinary proteomic signature for lupus nephritis in children. Pediatr Nephrol 22: 2047–2057. doi:10.1007/s00467-007-0608-x. PubMed: 17901988.
[45]
Negi VS,?Aggarwal A,?Dayal R,?Naik S,?Misra R (2000) Complement degradation product C3d in urine: marker of lupus nephritis. J Rheumatol 27: 380-383. PubMed: 10685801.
[46]
Varghese SA,?Powell TB,?Budisavljevic MN,?Oates JC,?Raymond JR et al. (2007) Urine biomarkers predict the cause of glomerular disease. J Am Soc Nephrol 18: 913-922. doi:10.1681/ASN.2006070767. PubMed: 17301191.
[47]
Branten AJ, du Buf-Vereijken PW, Klasen IS, Bosch FH, Feith GW et al. (2005) Urinary excretion of beta2-microglobulin and IgG predict prognosis in idiopathic membranous nephropathy: a validation study. J Am Soc Nephrol 16: 169-174. PubMed: 15563570.
[48]
Nasr SH, Fidler ME, Cornell LD,?Leung N, Cosio FG et al. (2012) Immunotactoid glomerulopathy: clinicopathologic and proteomic study. Nephrol Dial Transplant 0: 1–9. PubMed: 22872726.
[49]
Sethi S, Fervenza FC, Zhang Y, Zand L, Vrana JA et al. (2012) C3 glomerulonephritis: clinicopathological findings, complement abnormalities, glomerular proteomic profile, treatment, and follow-up. Kidney Int 82: 465–473. doi:10.1038/ki.2012.212. PubMed: 22673887.
[50]
Qiaoling Z, Xiaoyun J, Wei W, Shuhong D, Yaqin P et al. (2009) Altered P-selectin and CD44 expression in the renal tissues and peripheral blood of children with IgA nephropathy. Int Urol Nephrol 41: 703-711. doi:10.1007/s11255-008-9512-y. PubMed: 19125345.
[51]
Undurti A,?Huang Y,?Lupica JA,?Smith JD,?DiDonato JA et al. (2009) Modification of high density lipoprotein by myeloperoxidase generates a pro-inflammatory particle. J Biol Chem?284: 30825-30835. doi:10.1074/jbc.M109.047605. PubMed: 19726691.
[52]
Ohashi N,?Urushihara M,?Kobori H (2009) Activated intrarenal reactive oxygen species and renin angiotensin system in IgA nephropathy. Minerva Urol Nefrol? 61: 55-66. PubMed: 19417726.
[53]
Melenhorst WB, van den Heuvel MC, Timmer A, Huitema S,?Bulthuis M et al. (2006) ADAM19 expression in human nephrogenesis and renal disease: Associations with clinical and structural deterioration. Kidney Int 70: 1269-1278. doi:10.1038/sj.ki.5001753. PubMed: 16900093.
[54]
Webb DJ,?Gonias SL (1998) A modified human alpha 2-macroglobulin derivative that binds tumor necrosis factor-alpha and interleukin-1 beta with high affinity in vitro and reverses lipopolysaccharide toxicity in vivo in mice. Lab Invest?78: 939-948. PubMed: 9714181.
[55]
Ambrus G,?Gál P,?Kojima M,? Szilágyi K,?Balczer J et al. (2003) Natural substrates and inhibitors of mannan-binding lectin-associated serine protease-1 and -2: a study on recombinant catalytic fragments. J Immunol 170: 1374-1382. PubMed: 12538697.
[56]
Wei P,?Zhao YG,?Zhuang L,?Ruben S,?Sang QX (2001) Expression and enzymatic activity of human disintegrin and metalloproteinase ADAM19/meltrin beta. Biochem Biophys Res Commun?280: 744-755. doi:10.1006/bbrc.2000.4200. PubMed: 11162584.
[57]
Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28: 27–30. doi:10.1093/nar/28.7.e27. PubMed: 10592173.
[58]
Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF,?Itoh M et al. (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34: D354–D357. doi:10.1093/nar/gkj102. PubMed: 16381885.