全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Coral Reef Habitat Response to Climate Change Scenarios

DOI: 10.1371/journal.pone.0082404

Full-Text   Cite this paper   Add to My Lib

Abstract:

Coral reef ecosystems are threatened by both climate change and direct anthropogenic stress. Climate change will alter the physico-chemical environment that reefs currently occupy, leaving only limited regions that are conducive to reef habitation. Identifying these regions early may aid conservation efforts and inform decisions to transplant particular coral species or groups. Here a species distribution model (Maxent) is used to describe habitat suitable for coral reef growth. Two climate change scenarios (RCP4.5, RCP8.5) from the National Center for Atmospheric Research’s Community Earth System Model were used with Maxent to determine environmental suitability for corals (order Scleractinia). Environmental input variables best at representing the limits of suitable reef growth regions were isolated using a principal component analysis. Climate-driven changes in suitable habitat depend strongly on the unique region of reefs used to train Maxent. Increased global habitat loss was predicted in both climate projections through the 21st century. A maximum habitat loss of 43% by 2100 was predicted in RCP4.5 and 82% in RCP8.5. When the model is trained solely with environmental data from the Caribbean/Atlantic, 83% of global habitat was lost by 2100 for RCP4.5 and 88% was lost for RCP8.5. Similarly, global runs trained only with Pacific Ocean reefs estimated that 60% of suitable habitat would be lost by 2100 in RCP4.5 and 90% in RCP8.5. When Maxent was trained solely with Indian Ocean reefs, suitable habitat worldwide increased by 38% in RCP4.5 by 2100 and 28% in RCP8.5 by 2050. Global habitat loss by 2100 was just 10% for RCP8.5. This projection suggests that shallow tropical sites in the Indian Ocean basin experience conditions today that are most similar to future projections of worldwide conditions. Indian Ocean reefs may thus be ideal candidate regions from which to select the best strands of coral for potential re-seeding efforts.

References

[1]  Cheung WWL, Lam VWY, Sarmiento JL, Kearney K, Watson R et al. (2009) Projecting global marine biodiversity impacts under climate change scenarios. Fish and Fisheries 10: 235–251. doi:10.1111/j.1467-2979.2008.00315.x.
[2]  Pereira HM, Leadley PW, Proen?a V, Alkemade R, Scharlemann JPW et al. (2010) Scenarios for global biodiversity in the 21st Century. Science 330: 1496–1501. doi:10.1126/science.1196624. PubMed: 20978282.
[3]  Cahill AE, Aiello-Lammens ME, Fisher-Reid MC, Hua X, Karanewsky CJ, et al. (2012) How does climate change cause extinction? Procedings of the Royal Society B: Biological Sciences, 280 (1750).
[4]  Freeman LA, Miller AJ, Norris RD, Smith JC (2012) Classification of Remote Pacific Coral Reefs by Physical. Environmental_Entomol - Journal of Geophysical Research, Oceans 117(10).
[5]  Glynn PW (1993) Coral Reef Bleaching: Ecological. Perspectives - Coral Reefs 12: 1–17. doi:10.1007/BF00303779.
[6]  Brown B (1997) Coral bleaching: causes and consequences. Coral Reefs 16: 129–138. doi:10.1007/s003380050249.
[7]  Kleypas JA, Yates KK (2009) Coral reefs and ocean acidification. Oceanography 22.
[8]  Kleypas JA, McManus JW, Menez LAB (1999) Environmental limits to coral reef development: Where do we draw the line? American Zoologist 39: 146–159.
[9]  Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231–259. doi:10.1016/j.ecolmodel.2005.03.026.
[10]  Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM (2011) Beyond predictions: biodiversity conservation in a changing climate. Science, 332(6025): 53–58. doi:10.1126/science.1200303. PubMed: 21454781.
[11]  Dobrowski SZ, Thorne JH, Greenberg JA, Safford HA, Mynsberge AR et al. (2011) Modeling plant ranges over 75 years of climate change in California, USA: temporal transferability and species traits. Ecological Monographs 81(2): 241–257. doi:10.1890/10-1325.1.
[12]  ReefBase (2013) A Global Information System for Coral Reefs. Available: http://www.reefbase.org.
[13]  Gent PR, Danabasoglu G, Donner LJ, Holland MM, Hunke EC, et al. (2011) The Community Climate System Model Version 4. Journal of Climate 24(19): 4973–4991.
[14]  Moore JK, Doney SC, Lindsay K (2004) Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model. Global Biogeochemical Cycles 18(4).
[15]  Long M, Lindsay K, Peacock S, Moore J, Doney S (2013) Twentieth-Century Oceanic Carbon Uptake and Storage in CESM1(BGC). Journal of Climate ( in press).
[16]  Redfield AC (1934) On the proportions of organic derivatives in sea water and their relation to the composition of plankton. 176–192. University Press of Liverpool.
[17]  Mumby PJ, Skirving W, Strong AE, Hardy JT, LeDrew EF et al. (2004) Remote sensing of coral reefs and their physical environment. Mar Pollut Bull 48(3): 219–228. PubMed: 14972573.
[18]  Teneva L, Karnauskas M, Logan CA, Bianucci L, Currie JC et al. (2012) Predicting coral bleaching hotspots: the role of regional variability in thermal stress and potential adaptation rates. Coral Reefs 31(1): 1–12. doi:10.1007/s00338-011-0812-9.
[19]  McManus JW, Polsenberg JF (2004) Coral–algal phase shifts on coral reefs: ecological and environmental aspects. Progress in Oceanography 60(2): 263–279.
[20]  Riegl B, Piller WE (2003) Possible refugia for reefs in times of environmental stress. International Journal of Earth Sciences 92(4): 520–531. doi:10.1007/s00531-003-0328-9.
[21]  Woesik V (2001) Coral bleaching: the winners and the losers. Ecology Letters 4(2): 122–131. doi:10.1046/j.1461-0248.2001.00203.x.
[22]  McClanahan TR, Maina J, Moothien Pillay R, Baker AC (2005) Effects of geography, taxa, water flow, and temperature variation on coral bleaching intensity in Mauritius. Marine Ecology Progress Series 298: 131–142. doi:10.3354/meps298131.
[23]  Coles SL, Jokiel PL (1992) Effects of salinity on coral reefs. Pollution in Tropical Aquatic Systems: 147–166.
[24]  Langdon C, Takahashi T, Sweeney C, Chipman D, Goddard J et al. (2000) Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Global Biogeochemical Cycles 14(2): 639–654. doi:10.1029/1999GB001195.
[25]  Guinotte JM, Buddemeier RW, Kleypas JA (2003) Future coral reef habitat marginality: temporal and spatial effects of climate change in the Pacific basin. Coral Reefs 22(4): 551–558.
[26]  Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, et al. (2007) Coral reef under rapid climate change and ocean acidification. Science 318: 1737–1742.
[27]  Silverman J, Lazar B, Cao L, Caldeira K, Erez J (2009) Coral reefs may start dissolving when atmospheric CO2 doubles. Geophysical Research Letters 36(5): L05606.
[28]  Marsh ND, Svensmark H (2000) Low cloud properties influenced by cosmic rays.Physical Review Letters 85(23): 5004–5007. doi:10.1103/PhysRevLett.85.5004. PubMed: 11102172.
[29]  Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31(2): 161–175. doi:10.1111/j.0906-7590.2008.5203.x.
[30]  Kumar S, Stohlgren TJ (2009) Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. Journal of Ecology and Natural Environment 1(4): 094–098
[31]  Tittensor DP, Baco AR, Brewin PE, Clark MR, Consalvey M et al. (2009) Predicting global habitat suitability for stony corals on seamounts. Journal of Biogeography 36(6): 1111–1128. doi:10.1111/j.1365-2699.2008.02062.x.
[32]  Davies AJ, Guinotte JM (2011) Global habitat suitability for framework-forming cold-water corals. PLOS ONE 6(4): e18483. doi:10.1371/journal.pone.0018483. PubMed: 21525990.
[33]  Yesson C, Taylor ML, Tittensor DP, Davies AJ, Guinotte J et al. (2012) Global habitat suitability of cold-water octocorals. Journal of Biogeography 39(7): 1278-1292. doi:10.1111/j.1365-2699.2011.02681.x.
[34]  Bridge T, Beaman R, Done T, Webster J (2012) Predicting the location and spatial extent of submerged coral reef habitat in the Great Barrier Reef World Heritage Area, Australia. PLOS ONE 7(10): e48203. doi:10.1371/journal.pone.0048203. PubMed: 23118952.
[35]  Couce E, Ridgwell A, Hendy EJ (2012) Environmental controls on the distribution of shallow-water coral reefs. Journal of Biogeography: 1–16.
[36]  Araújo MB, Peterson AT (2012) Uses and misuses of bioclimatic envelope modeling. Ecology 93(7): 1527–1539. doi:10.1890/11-1930.1. PubMed: 22919900.
[37]  Precht WF, Aronson RB (2004) Climate flickers and range shifts of reef corals. Frontiers in Ecology and the Environment. 2(6): 307–314. Available online at: doi:10.1890/1540-9295(2004)002[0307:CFAR?SO]2.0.CO; 2.
[38]  Yamano H, Sugihara K, Nomura K (2011) Rapid poleward range expansion of tropical reef corals in response to rising sea surface temperatures. Geophysical Research Letters 38: L04601.
[39]  Silverman J, Lazar B, Erez J (2007) Effect of aragonite saturation, temperature, and nutrients on the community calcification rate of a coral reef. Journal of Geophysical Research, Oceans 112(C5): 1978–2012.
[40]  Veron JEN, Hoegh-Guldberg O, Lenton TM, Lough JM, Obura DO et al. (2009) The coral reef crisis: The critical importance of 350ppm CO2. Mar Pollut Bull 58(10): 1428–1436. doi:10.1016/j.marpolbul.2009.09.009. PubMed: 19782832.
[41]  Frieler K, Meinshausen M, Golly A, Mengel M, Lebek K et al. (2012) Limiting global warming to 2° C is unlikely to save most coral reefs. Nature Climate Change 3: 165–170. doi:10.1038/nclimate1674.
[42]  Riegl BM, Purkis SJ, Al-Cibahy AS, Abdel-Moati MA, Hoegh-Guldberg O (2011) Present limits to heat-adaptability in corals and population-level responses to climate extremes. PLOS ONE 6(9): e24802. doi:10.1371/journal.pone.0024802. PubMed: 21949755.
[43]  Richardson DM, Hellmann JJ, McLachlan JS, Sax DF, Schwartz MW et al. (2009) Multidimensional evaluation of managed relocation. Proceedings of the National Academy of Sciences of the United States of America 106(24): 9721–9724. doi:10.1073/pnas.0902327106. PubMed: 19509337.
[44]  Schwartz MW, Hellmann JJ, McLachlan JM, Sax DF, Borevitz JO et al. (2012) Managed Relocation: Integrating the Scientific, Regulatory, and Ethical Challenges. BioScience 62(8): 732–743. doi:10.1525/bio.2012.62.8.6.
[45]  Hellmann JJ (2013) Translocation as a Conservation Strategy, in Encyclopedia of Biodiversity. (second Edition), Simon AL, editor. . Academic Press, Waltham . pp. 236–240.
[46]  Kreyling J, Bittner T, Jaeschke A, Jentsch A, Steinbauer MJ et al. (2011) Assisted Colonization: A Question of Focal Units and Recipient Localities. Restoration Ecology 19(4): 433–440. doi:10.1111/j.1526-100X.2011.00777.x.
[47]  Ricciardi A, Simberloff D (2009) Assisted colonization is not a viable conservation strategy. Trends in Ecology and Evolution 24(5): 248–253. doi:10.1016/j.tree.2008.12.006.
[48]  Weil E, Rogers C (2011) Coral reef diseases in the Atlantic-Caribbean. In: Z. DubinskyN. Stambler. Coral reefs: an ecosystem in transition. Springer. pp. 465–491.
[49]  Sinclair SJ, White MD, Newell GR (2010) How useful are species distribution models for managing biodiversity under future climates? Ecology and Society 15(1).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133