全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Chemical Camouflage– A Frog's Strategy to Co-Exist with Aggressive Ants

DOI: 10.1371/journal.pone.0081950

Full-Text   Cite this paper   Add to My Lib

Abstract:

Whereas interspecific associations receive considerable attention in evolutionary, behavioural and ecological literature, the proximate bases for these associations are usually unknown. This in particular applies to associations between vertebrates with invertebrates. The West-African savanna frog Phrynomantis microps lives in the underground nest of ponerine ants (Paltothyreus tarsatus). The ants usually react highly aggressively when disturbed by fiercely stinging, but the frog is not attacked and lives unharmed among the ants. Herein we examined the proximate mechanisms for this unusual association. Experiments with termites and mealworms covered with the skin secretion of the frog revealed that specific chemical compounds seem to prevent the ants from stinging. By HPLC-fractionation of an aqueous solution of the frogs' skin secretion, two peptides of 1,029 and 1,143 Da were isolated and found to inhibit the aggressive behaviour of the ants. By de novo sequencing using tandem mass spectrometry, the amino acid sequence of both peptides consisting of a chain of 9 and 11 residues, respectively, was elucidated. Both peptides were synthesized and tested, and exhibited the same inhibitory properties as the original frog secretions. These novel peptides most likely act as an appeasement allomone and may serve as models for taming insect aggression.

References

[1]  Bronstein JL, Alarcon R, Geber M (2006) The evolution of plant-insect mutualisms. New Phytolo 172: 412–428.
[2]  Jones EI, Bronstein JL, Ferriere R (2012) The fundamental role of competition in the ecology and evolution of mutualisms. Ann NY Acad Scien 1256: 66–88 (doi:10.1111/j.1749-6632.2011.06552.x).
[3]  Poulin R, Forbes M (2012) Meta-analysis and research on host-parasite interactions: past and future. Evol Ecol 26: 1169–1185 (doi:10.1007/s10682-011-9544-0).
[4]  H?lldobler B, Willson EO (1990) The ants. Cambridge, Massachusetts, Harvard University Press.
[5]  Edwards DP (2009) The roles of tolerance in the evolution, maintenance and breakdown of mutualism. Naturwissenschaften 96: 1137–1145 (doi:10.1007/s00114-009-0559-0).
[6]  Ostlund-Nilsson S, Becker JHA, Nilsson GE (2005) Shrimps remove ectoparasites from fishes in temperate waters. Biol Lett 1: , 454–456 . (doi:10.1098/rsbl.2005.0363).
[7]  Erickson DM, Wood EA, Oliver KM, Billick I, Abbot P (2012) The effect of ants on the population dynamics of a protective symbiont of aphids, Hamiltonella defensa. Ann Entomol Soc Am 105: 447–453 (doi:10.1603/AN11176).
[8]  Becker JH, Grutter AS (2004) Cleaner shrimp do clean. Coral Reefs 23: 515–520 (doi:10.1007/s00338-004-0429-3).
[9]  Ricciardi F, Boyer M, Ollerton J (2010) Assemblage and interaction structure of the anemonefish-anemone mutualism across the Manado region of Sulawesi, Indonesia. Environ Biol Fishes 87: 333–347 (doi:10.1007/s10641-010-9606-0).
[10]  Toledo LF, Ribeiro RS, Haddad CFB (2007) Anurans as prey: an exploratory analysis and size relationships between predators and their prey. J Zool (London) 271: 170–177 (doi:10.1111/j.1469-7998.2006.00195.x).
[11]  Wells KD (2007) The ecology and behaviour of amphibians. Chicago & London, University of Chicago Press.
[12]  Blair WF (1936) Ecological notes on Microhyla olivacea (Hallowell). Copeia 1936: 115.
[13]  Hunt RH (1980) Toad sanctuary in a tarantula burrow. J Nat Hist 89: 48–53.
[14]  Cocroft RB, Humbler K (1989) Observations on a commensal relationship of the microhylid frog Chiasmocleis ventrimaculata and the burrowing theraphosid spider Xenesthis immanis in southeastern Peru. Biotropica 21: 2–8 (doi:10.2307/2388434).
[15]  Siliwal M, Ravichandran B (2008) Commensalism in microhylid frogs and mygalomorph spiders. Zoos' Print Mag 23: 13.
[16]  Karunarathna SDMS, Amarasinghe AAT (2009) Mutualism in Ramanella nagaoi Manamendra-Arachchi & Pethiyagoda, 2001 (Amphibia: Microhylidae) and Poecilotheria species (Arachnida: Thereposidae) from Sri Lanka. Taprobanica 1: 16–18.
[17]  Dundee HA, Shillington C, Yeary CM (2012) Interactions between tarantulas (Aphonopelma hentzi) and narrow-mouthed toads (Gastrophryne olivacea): support for a symbiotic relationship. Tul Stud Zool Bot 32: 31–38.
[18]  Dejean A, Amiet JL (1992) Un cas de myrmécophilie inattendu: la cohabitation de l'anoure Kassina senegalensis avec la fourmi Megaponera foetens. Alytes 10: 31–36.
[19]  Schüter A, Reg?s J (1996) Lithodytes lineatus (Schneider, 1799) (Amphibia: Leptodactylidae) as a dweller in nests of the leaf cutting ant Atta cephalotes (Linnaeus, 1758)(Hymenoptera: Attini). Amphibia-Reptilia 2: 117–121.
[20]  Schlüter A, L?ttker P, Mebert K (2009) Use of an active nest of the leaf cutter ant Atta cephalotes (Hymenioptera: Formicidae) as a breeding site of Lithodytes lineatus (Anura: Leptodactylidae). Herpetol Notes 2: 101–105.
[21]  Toledo LF, Sazima I, Haddad CFB (2011) Behavioural defences of anurans: an overview. Ethol Ecol Evol 2011 23: 1–25 (doi:10.1080/03949370.2010.534321).
[22]  R?del MO (2000) Herpetofauna of West Africa, Vol. I: Amphibians of the West African savanna. Frankfurt/M, Edition Chimaira.
[23]  Hirschfeld M, R?del MO (2011) Variable reproductive strategies of an African savanna frog, Phrynomantis microps (Amphibia, Anura, Microhylidae). J Trop Ecol 27: 601–609 (doi:10.1017/S0266467411000320).
[24]  R?del MO, Braun U (1999) Associations between anurans and ants in a West African savanna (Anura: Microhylidae, Hyperoliidae, and Hymenoptera: Formicidae). Biotropica 31: 178–183 (doi:10.2307/2663971).
[25]  Braun U, Peters C, H?lldobler B (1994) The giant nests of the African stink ant Paltothyreus tarsatus (Formicidae, Ponerinae). Biotropica 26: 308–311 (doi:10.2307/2388852).
[26]  Dejean A, Lachaud JP, Beugnon G (1993) Efficiency in the exploitation of patchy environments by the ponerine ant Paltothyreus tarsatus: An ecological consequence of the flexibility of prey capture behavior. J Ethol 11: 43–53 (doi:10.1007/BF02350005).
[27]  Vander Meer RK, Jouvenaz DP, Wojcik DP (1989) Chemical mimicry in a parasitoid (Hymenoptera: Eucharitidae) of fire ants (Hymenoptera: Formicidae). J Chem Ecol 15: 2247–2261 (doi:10.1007/BF01014113).
[28]  Howard RW (1993) Cuticular hydrocarbons and chemical communication. In Insect Lipids: Chemistry, Biochemistry and Biology, Edited by Stanley-Samuelson DW, Nelson DR. Lincoln NE, University of Nebraska Press; 179–226.
[29]  Akino T (2002) Chemical camouflage by myrmecophilous beetles Zyras comes (Coleoptera: Staphylinidae) and Diaritiger fossulatus (Coleoptera: Pselaphidae) to be integrated into the nest of Lasius fuliginosus (Hymenoptera: Formicidae). Chemoecology 12: 83–89 (doi:10.1007/s00049-002-8330-4).
[30]  Bagnères AG, Lorenzi MC (2010) Chemical deception/mimicry using cuticular hydrocarbons. In Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology, Edited by Blomquist GJ, Bagnères AG. Cambridge, Cambridge University Press; 282–324.
[31]  Lenoir A, D'Ettorre P, Errard C, Hefetz A (2001) Chemical ecology and social parasitism in ants. Ann Rev Entomol 46: 573–599.
[32]  Martin SJ, Jenner EA, Drijfhout FP (2007) Chemical deterrent enables a socially parasitic ant to invade multiple hosts. Proc Roy Soc B 274: , 2717–2721. (doi:10.1098/rspb.2007.0795)
[33]  Nash DR, Boomsma JJ (2008) Communication between hosts and social parasites. In Sociobiology of Communication: an interdisciplinary perspective, Edited by D'Ettorre P, Hughes D. Oxford, Oxford University Press; 55–79.
[34]  Lhomme P, Ayasse M, Valterová I, Lecocq T, Rasmont P (2012) Born in an alien nest: How do social parasite male offspring escape from host aggression. PLoS ONE 7(9): e43053 (doi:10.1371/journal.pone.0043053).
[35]  Endler A, Liebig J, H?lldobler B (2006) Queen fertility, egg marking and colony size in the ant Camponotus floridanus. Behav Ecol Sociobiol 59: 490–499 (doi:10.1007/s00265-005-0073-0).
[36]  Daly JW, Myers CW, Whittaker N (1987) Further classification of skin alkaloids from Neotropical poison frogs (Dendrobatidae), with a general survey of toxic noxious substances in the amphibia. Toxicon 25: 1023–1095 (doi:10.1016/0041-0101(87)90265-0).
[37]  Barthalmus GT (1994) Biological roles of amphibian skin secretions. In Amphibian Biology, Vol. 1 The Integument, Edited by Heatwole H, Barthalmus GT. Chipping Norton, New South Wales, Surrey Beatty & Sons; 382–410.
[38]  Erspamer V (1994) Bioactive secretions of the amphibian integument. In Amphibian Biology, Vol. 1 The Integument, Edited by Heatwole H, Barthalmus GT. Chipping Norton, New South Wales, Surrey Beatty & Sons; 178–350
[39]  Bevins CL, Zasloff M (1990) Peptides from frog skin. Ann Rev Biochem 59: 395–414.
[40]  Clarke BT (1997) The natural history of amphibian skin secretions, their normal functioning and potential medical applications. Biol Rev Camb Philos Soc 72: 365–379 (doi:10.1017/S0006323197005045).
[41]  Saporito RA, Donnelly MA, Spande TF, Garraffo HM (2012) A review of chemical ecology in poison frogs. Chemoecology 22: 159–168 (doi:10.1007/s00049-011-0088-0).
[42]  Daly JW, Kaneko J, Wilham J, Garraffo HM, Spande TF, et al. (2002) Bioactive alkaloids from frog skin: Combinatorial bioprospecting reveals that pumiliotoxins have an arthropod source. PNAS 99: 13996–14001 (doi:10.1073/pnas.222551599).
[43]  Mebs D, Jansen M, K?hler G, Pogoda W, Kauert G (2010) Myrmecophagy and alkaloid sequestration in amphibians: a study on Ameerga picta (Dendrobatidae) and Elachistocleis sp. (Microhylidae) frogs. Salamandra 46: 11–15.
[44]  Simmaco M, Mignogna G, Barra D (1998) Antimicrobial peptides from amphibian skin: What do they tell us? Peptide Sci 47: 435–450 (doi: ;10.1002/(SICI)1097-0282(1998)47:6<435::A?ID-BIP3>3.0.CO;2-8).
[45]  Rinaldi AC (2002) Antimicrobial peptides from amphibian skin: an expanding scenario. Curr Opin Chem Biol 6: 799–804 (doi:10.1016/S1367-5931(02)00401-5).
[46]  Nascimento AC, Fontes W, Sebben A, Castro MS (2003) Antimicrobial peptides from anurans skin secretions. Prot Pept Lett 10: 227–238 (doi:10.2174/0929866033478933).
[47]  Conlon JM, Iwamuro S, King JD (2009) Dermal cytolytic peptides and the system of innate immunity in anurans. Ann NY Acad Scien 1163: 75–82 (doi:10.1111/j.1749-6632.2008.03618.x).
[48]  Conlon JM (2011) Structural diversity and species distribution of host-defense peptides in frog skin secretions. Cell Mol Life Scien 68: 2303–2315 (doi:10.1007/s00018-011-0720-8).
[49]  Woodhams DC, Ardipradja K, Alford RA, Marantelli G, Reinert LK, et al. (2007) Resistance to chytridiomycosis varies among amphibian species and is correlated with skin peptide defenses. Anim Cons 10: 409–417 (doi:10.1111/j.1469-1795.2007.00130.x).
[50]  Rollins-Smith LA (2009) The role of amphibian antimicrobial peptides in protection of amphibians from pathogens linked to global amphibian declines. Biochem et Biophys Acta-Biomem 1788: 1593–1599 (doi:10.1016/j.bbamem.2009.03.008).
[51]  Weldon PJ, Carroll JF (2006) Vertebrate chemical defense: secreted and topically acquired deterrents of arthropods. In Insect Repellents. Principles, Methods, and Users, Edited by Debboun M, Frances SP, Strickman D. CRC Press Taylor & Francis Group; 47–74.
[52]  Szelistowski WA (1985) Unpalatability of the poison arrow frog Dendrobates pumilio to the ctenid spider Cupiennius coccineus. Biotropica 17: 345–346 (doi:10.2307/2388601).
[53]  Fritz G, Rand AS, de Pamphilis CW (1981) The aposematically colored frog, Dendrobates pumilio, is distasteful to the large ant, Paraponera clavata. Biotropica 13: 158–158 (doi:10.2307/2387719).
[54]  Jaeger RG (1971) Toxic reaction to skin secretions of the frog, Phrynomantis bifasciatus. Copeia 1971: 160–161.
[55]  Pickersgill M (1997) A case of mild contact poisoning by the rubber frog Phrynomantis bifasciatus. Herptile 22: 141.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133