[1] | Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131: 872-877. doi:10.1104/pp.017004. PubMed: 12644639.
|
[2] | Pretty J (2008) Agricultural sustainability: concepts, principles and evidence. Philos Trans R Soc Lond B Biol Sci 363: 447-465. doi:10.1098/rstb.2007.2163. PubMed: 17652074.
|
[3] | Escaray FJ, Menendez AB, Gárriz A, Pieckenstain FL, Estrella MJ et al. (2012) Ecological and agronomic importance of the plant genus Lotus. Its application in grassland sustainability and the amelioration of constrained and contaminated soils. Plant Sci 182: 121-133. doi:10.1016/j.plantsci.2011.03.016. PubMed: 22118623.
|
[4] | Wise RP, Moscou MJ, Bogdanove AJ, Whitham SA (2007) Transcript profiling in host-pathogen interactions. Annu Rev Phytopathol 45: 329-369. doi:10.1146/annurev.phyto.45.011107.143944. PubMed: 17480183.
|
[5] | Barah P, Winge P, Kusnierczyk A, Tran DH, Bones AM (2013) Molecular signatures in Arabidopsis thaliana in response to insect attack and bacterial infection. PLOS ONE 8: e58987. doi:10.1371/journal.pone.0058987. PubMed: 23536844.
|
[6] | Garcia-Brugger A, Lamotte O, Vandelle E, Bourque S, Lecourieux D et al. (2006) Early signaling events induced by elicitors of plant defenses. Mol Plant Microbe Interact 19: 711-724. doi:10.1094/MPMI-19-0711. PubMed: 16838784.
|
[7] | Klessig DF, Durner J, Noad R, Navarre DA, Wendehenne D et al. (2000) Nitric oxide and salicylic acid signaling in plant defense. Proc Natl Acad Sci U S A 97: 8849-8855. doi:10.1073/pnas.97.16.8849. PubMed: 10922045.
|
[8] | Kim MG, Kim SY, Kim WY, Mackey D, Lee SY (2008) Responses of Arabidopsis thaliana to challenge by Pseudomonas syringae. Mol Cells 25: 323-331. PubMed: 18483469.
|
[9] | Samac DA, Graham MA (2007) Recent advances in legume-microbe interactions: recognition, defense response, and symbiosis from a genomic perspective. Plant Physiol 144: 582-587. doi:10.1104/pp.107.096503. PubMed: 17556521.
|
[10] | Zhu H, Choi HK, Cook DR, Shoemaker RC (2005) Bridging model and crop legumes through comparative genomics. Plant Physiol 137: 1189-1196. doi:10.1104/pp.104.058891. PubMed: 15824281.
|
[11] | Bozsó Z, Maunoury N, Szatmari A, Mergaert P, Ott PG et al. (2009) Transcriptome analysis of a bacterially induced basal and hypersensitive response of Medicago truncatula. Plant Mol Biol 70: 627-646. doi:10.1007/s11103-009-9496-8. PubMed: 19466566.
|
[12] | Uppalapati SR, Marek SM, Lee HK, Nakashima J, Tang Y et al. (2009) Global gene expression profiling during Medicago truncatula-Phymatotrichopsis omnivora interaction reveals a role for jasmonic acid, ethylene, and the flavonoid pathway in disease development. Mol Plant Microbe Interact 22: 7-17. doi:10.1094/MPMI-22-1-0007. PubMed: 19061398.
|
[13] | Zou J, Rodriguez-Zas S, Aldea M, Li M, Zhu J et al. (2005) Expression profiling soybean response to Pseudomonas syringae reveals new defense-related genes and rapid HR-specific downregulation of photosynthesis. Mol Plant Microbe Interact 18: 1161-1174. doi:10.1094/MPMI-18-1161. PubMed: 16353551.
|
[14] | Lodha TD, Basak J (2012) Plant-pathogen interactions: what microarray tells about it? Mol Biotechnol 50: 87-97. doi:10.1007/s12033-011-9418-2. PubMed: 21618071.
|
[15] | Sato S, Tabata S (2006) Lotus japonicus as a platform for legume research. Curr Opin Plant Biol 9: 128-132. doi:10.1016/j.pbi.2006.01.008. PubMed: 16480917.
|
[16] | Udvardi MK, Tabata S, Parniske M, Stougaard J (2005) Lotus japonicus: legume research in the fast lane. Trends Plant Sci 10: 222-228. doi:10.1016/j.tplants.2005.03.008. PubMed: 15882654.
|
[17] | Gondo T, Sato S, Okumura K, Tabata S, Akashi R et al. (2007) Quantitative trait locus analysis of multiple agronomic traits in the model legume Lotus japonicus. Genome 50: 627-637. doi:10.1139/G07-040. PubMed: 17893740.
|
[18] | Urbański DF, Ma?olepszy A, Stougaard J, Andersen SU (2013) High-Throughput and Targeted Genotyping of Lotus japonicus LORE1 Insertion Mutants. Methods Mol Biol 1069: 119-146. PubMed: 23996313.
|
[19] | Fukai E, Soyano T, Umehara Y, Nakayama S, Hirakawa H et al. (2012) Establishment of a Lotus japonicus gene tagging population using the exon-targeting endogenous retrotransposon LORE1. Plant J 69: 720-730. doi:10.1111/j.1365-313X.2011.04826.x. PubMed: 22014259.
|
[20] | Perry JA, Wang TL, Welham TJ, Gardner S, Pike JM et al. (2003) A TILLING reverse genetics tool and a web-accessible collection of mutants of the legume Lotus japonicus. Plant Physiol 131: 866-871. doi:10.1104/pp.102.017384. PubMed: 12644638.
|
[21] | Preston GM (2000) Pseudomonas syringae pv. tomato: the right pathogen, of the right plant, at the right time. Mol Plant Pathol 1: 263-275. doi:10.1046/j.1364-3703.2000.00036.x. PubMed: 20572973.
|
[22] | Hoagland D, Arnon D (1950) The water-culture method for growing plants without soil. Calif Agric Exp Stn Circ 347. University of California, Berkeley, USA. pp. 1-32.
|
[23] | King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 44: 301-307. PubMed: 13184240.
|
[24] | Katagiri F, Thilmony R, He SY (2002) The Arabidopsis thaliana-pseudomonas syringae interaction. Arabidopsis Book 1: e0039. PubMed: 22303207.
|
[25] | Lohse M, Nunes-Nesi A, Krüger P, Nagel A, Hannemann J et al. (2010) Robin: an intuitive wizard application for R-based expression microarray quality assessment and analysis. Plant Physiol 153: 642-651. doi:10.1104/pp.109.152553. PubMed: 20388663.
|
[26] | Thimm O, Bl?sing O, Gibon Y, Nagel A, Meyer S et al. (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37: 914-939. doi:10.1111/j.1365-313X.2004.02016.x. PubMed: 14996223.
|
[27] | Usadel B, Nagel A, Thimm O, Redestig H, Blaesing OE et al. (2005) Extension of the visualization tool MapMan to allow statistical analysis of arrays, display of corresponding genes, and comparison with known responses. Plant Physiol 138: 1195-1204. doi:10.1104/pp.105.060459. PubMed: 16009995.
|
[28] | Paolocci F, Robbins MP, Passeri V, Hauck B, Morris P et al. (2011) The strawberry transcription factor FaMYB1 inhibits the biosynthesis of proanthocyanidins in Lotus corniculatus leaves. J Exp Bot 62: 1189-1200. doi:10.1093/jxb/erq344. PubMed: 21041370.
|
[29] | Nanda AK, Andrio E, Marino D, Pauly N, Dunand C (2010) Reactive oxygen species during plant-microorganism early interactions. J Integr Plant Biol 52: 195-204. doi:10.1111/j.1744-7909.2010.00933.x. PubMed: 20377681.
|
[30] | Bernoux M, Ellis JG, Dodds PN (2011) New insights in plant immunity signaling activation. Curr Opin Plant Biol 14: 512-518. doi:10.1016/j.pbi.2011.05.005. PubMed: 21723182.
|
[31] | Postel S, Kemmerling B (2009) Plant systems for recognition of pathogen-associated molecular patterns. Semin Cell Dev Biol 20: 1025-1031. doi:10.1016/j.semcdb.2009.06.002. PubMed: 19540353.
|
[32] | Coll NS, Epple P, Dangl JL (2011) Programmed cell death in the plant immune system. Cell Death Differ 18: 1247-1256. doi:10.1038/cdd.2011.37. PubMed: 21475301.
|
[33] | Roux M, Schwessinger B, Albrecht C, Chinchilla D, Jones A et al. (2011) The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens. Plant Cell 23: 2440-2455. doi:10.1105/tpc.111.084301. PubMed: 21693696.
|
[34] | Afzal AJ, Wood AJ, Lightfoot DA (2008) Plant receptor-like serine threonine kinases: roles in signaling and plant defense. Mol Plant Microbe Interact 21: 507-517. doi:10.1094/MPMI-21-5-0507. PubMed: 18393610.
|
[35] | Du L, Chen Z (2000) Identification of genes encoding receptor-like protein kinases as possible targets of pathogen- and salicylic acid-induced WRKY DNA-binding proteins in Arabidopsis. Plant J 24: 837-847. doi:10.1046/j.1365-313x.2000.00923.x. PubMed: 11135117.
|
[36] | Kim HS, Jung MS, Lee SM, Kim KE, Byun H et al. (2009) An S-locus receptor-like kinase plays a role as a negative regulator in plant defense responses. Biochem Biophys Res Commun 381: 424-428. doi:10.1016/j.bbrc.2009.02.050. PubMed: 19222996.
|
[37] | Ma Y, Walker RK, Zhao Y, Berkowitz GA (2012) Linking ligand perception by PEPR pattern recognition receptors to cytosolic Ca2+ elevation and downstream immune signaling in plants. Proc Natl Acad Sci U S A 109: 19852-19857. doi:10.1073/pnas.1205448109. PubMed: 23150556.
|
[38] | Brutus A, Sicilia F, Macone A, Cervone F, De Lorenzo G (2010) A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides. Proc Natl Acad Sci U S A 107: 9452-9457. doi:10.1073/pnas.1000675107. PubMed: 20439716.
|
[39] | Vatsa P, Chiltz A, Bourque S, Wendehenne D, Garcia-Brugger A et al. (2011) Involvement of putative glutamate receptors in plant defence signaling and NO production. Biochimie 93: 2095-2101. doi:10.1016/j.biochi.2011.04.006. PubMed: 21524679.
|
[40] | Knepper C, Savory EA, Day B (2011) The role of NDR1 in pathogen perception and plant defense signaling. Plant Signal Behav 6: 1114-1116. doi:10.4161/psb.6.8.15843. PubMed: 21758001.
|
[41] | Teves SS, Henikoff S (2013) The heat shock response: A case study of chromatin dynamics in gene regulation. Biochem Cell Biol 91: 42-48. doi:10.1139/bcb-2012-0075. PubMed: 23442140.
|
[42] | Clément M, Leonhardt N, Droillard MJ, Reiter I, Montillet JL et al. (2011) The cytosolic/nuclear HSC70 and HSP90 molecular chaperones are important for stomatal closure and modulate abscisic acid-dependent physiological responses in Arabidopsis. Plant Physiol 156: 1481-1492. doi:10.1104/pp.111.174425. PubMed: 21586649.
|
[43] | Liu JZ, Whitham SA (2013) Overexpression of a soybean nuclear localized type-III DnaJ domain-containing HSP40 reveals its roles in cell death and disease resistance. Plant J 74: 110-121. doi:10.1111/tpj.12108. PubMed: 23289813.
|
[44] | Chen L, Hamada S, Fujiwara M, Zhu T, Thao NP et al. (2010) The Hop/Sti1-Hsp90 chaperone complex facilitates the maturation and transport of a PAMP receptor in rice innate immunity. Cell Host Microbe 7: 185-196. doi:10.1016/j.chom.2010.02.008. PubMed: 20227662.
|
[45] | Hubert DA, Tornero P, Belkhadir Y, Krishna P, Takahashi A et al. (2003) Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein. EMBO J 22: 5679-5689. doi:10.1093/emboj/cdg547. PubMed: 14592967.
|
[46] | Jelenska J, van Hal JA, Greenberg JT (2010) Pseudomonas syringae hijacks plant stress chaperone machinery for virulence. Proc Natl Acad Sci U S A 107: 13177-13182. doi:10.1073/pnas.0910943107. PubMed: 20615948.
|
[47] | Torres MA (2010) ROS in biotic interactions. Physiol Plant 138: 414-429. doi:10.1111/j.1399-3054.2009.01326.x. PubMed: 20002601.
|
[48] | Noctor G, Foyer CH (1998) ASCORBATE AND GLUTATHIONE: Keeping Active Oxygen Under Control. Annu Rev Plant Physiol Plant Mol Biol 49: 249-279. doi:10.1146/annurev.arplant.49.1.249. PubMed: 15012235.
|
[49] | Cummins I, Dixon DP, Freitag-Pohl S, Skipsey M, Edwards R (2011) Multiple roles for plant glutathione transferases in xenobiotic detoxification. Drug Metab Rev 43: 266-280. doi:10.3109/03602532.2011.552910. PubMed: 21425939.
|
[50] | Singh K, Foley RC, O?ate-Sánchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5: 430-436. doi:10.1016/S1369-5266(02)00289-3. PubMed: 12183182.
|
[51] | Abbruscato P, Nepusz T, Mizzi L, Del Corvo M, Morandini P et al. (2012) OsWRKY22, a monocot WRKY gene, plays a role in the resistance response to blast. Mol Plant Pathol 13: 828-841. doi:10.1111/j.1364-3703.2012.00795.x. PubMed: 22443363.
|
[52] | Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL et al. (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415: 977-983. doi:10.1038/415977a. PubMed: 11875555.
|
[53] | Lai Z, Vinod K, Zheng Z, Fan B, Chen Z (2008) Roles of Arabidopsis WRKY3 and WRKY4 transcription factors in plant responses to pathogens. BMC Plant Biol 8: 68. doi:10.1186/1471-2229-8-68. PubMed: 18570649.
|
[54] | Kesarwani M, Yoo J, Dong X (2007) Genetic interactions of TGA transcription factors in the regulation of pathogenesis-related genes and disease resistance in Arabidopsis. Plant Physiol 144: 336-346. doi:10.1104/pp.106.095299. PubMed: 17369431.
|
[55] | Zander M, Chen S, Imkampe J, Thurow C, Gatz C (2012) Repression of the Arabidopsis thaliana jasmonic acid/ethylene-induced defense pathway by TGA-interacting glutaredoxins depends on their C-terminal ALWL motif. Mol Plant 5: 831-840. doi:10.1093/mp/ssr113. PubMed: 22207719.
|
[56] | Thurow C, Schiermeyer A, Krawczyk S, Butterbrodt T, Nickolov K et al. (2005) Tobacco bZIP transcription factor TGA2.2 and related factor TGA2.1 have distinct roles in plant defense responses and plant development. Plant J 44: 100-113. doi:10.1111/j.1365-313X.2005.02513.x. PubMed: 16167899.
|
[57] | Xu ZS, Chen M, Li LC, Ma YZ (2011) Functions and application of the AP2/ERF transcription factor family in crop improvement. J Integr Plant Biol 53: 570-585. doi:10.1111/j.1744-7909.2011.01062.x. PubMed: 21676172.
|
[58] | Thilmony R, Underwood W, He SY (2006) Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157:H7. Plant J 46: 34-53. doi:10.1111/j.1365-313X.2006.02725.x. PubMed: 16553894.
|
[59] | Brown RL, Kazan K, McGrath KC, Maclean DJ, Manners JM (2003) A role for the GCC-box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis. Plant Physiol 132: 1020-1032. doi:10.1104/pp.102.017814. PubMed: 12805630.
|
[60] | Moffat CS, Ingle RA, Wathugala DL, Saunders NJ, Knight H et al. (2012) ERF5 and ERF6 play redundant roles as positive regulators of JA/Et-mediated defense against Botrytis cinerea in Arabidopsis. PLOS ONE 7: e35995. doi:10.1371/journal.pone.0035995. PubMed: 22563431.
|
[61] | Yanhui C, Xiaoyuan Y, Kun H, Meihua L, Jigang L et al. (2006) The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biol 60: 107-124. doi:10.1007/s11103-005-2910-y. PubMed: 16463103.
|
[62] | Eulgem T (2005) Regulation of the Arabidopsis defense transcriptome. Trends Plant Sci 10: 71-78. doi:10.1016/j.tplants.2004.12.006. PubMed: 15708344.
|
[63] | Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43: 205-227. doi:10.1146/annurev.phyto.43.040204.135923. PubMed: 16078883.
|
[64] | Thaler JS, Humphrey PT, Whiteman NK (2012) Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci 17: 260-270. doi:10.1016/j.tplants.2012.02.010. PubMed: 22498450.
|
[65] | Chen Z, Zheng Z, Huang J, Lai Z, Fan B (2009) Biosynthesis of salicylic acid in plants. Plant Signal Behav 4: 493-496. doi:10.4161/psb.4.6.8392. PubMed: 19816125.
|
[66] | Fraser CM, Chapple C (2011) The phenylpropanoid pathway in Arabidopsis. Arabidopsis Book 9: e0152. PubMed: 22303276.
|
[67] | Loake G, Grant M (2007) Salicylic acid in plant defence--the players and protagonists. Curr Opin Plant Biol 10: 466-472. doi:10.1016/j.pbi.2007.08.008. PubMed: 17904410.
|
[68] | Wu Y, Zhang D, Chu JY, Boyle P, Wang Y et al. (2012) The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Rep 1: 639-647. doi:10.1016/j.celrep.2012.05.008. PubMed: 22813739.
|
[69] | Zhang Y, Cheng YT, Qu N, Zhao Q, Bi D et al. (2006) Negative regulation of defense responses in Arabidopsis by two NPR1 paralogs. Plant J 48: 647-656. doi:10.1111/j.1365-313X.2006.02903.x. PubMed: 17076807.
|
[70] | Wiermer M, Feys BJ, Parker JE (2005) Plant immunity: the EDS1 regulatory node. Curr Opin Plant Biol 8: 383-389. doi:10.1016/j.pbi.2005.05.010. PubMed: 15939664.
|
[71] | Nawrath C, Heck S, Parinthawong N, Métraux JP (2002) EDS5, an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family. Plant Cell 14: 275-286. doi:10.1105/tpc.010376. PubMed: 11826312.
|
[72] | Kombrink E (2012) Chemical and genetic exploration of jasmonate biosynthesis and signaling paths. Planta 236: 1351-1366. doi:10.1007/s00425-012-1705-z. PubMed: 23011567.
|
[73] | Wasternack C, Goetz S, Hellwege A, Forner S, Strnad M et al. (2012) Another JA/COI1-independent role of OPDA detected in tomato embryo development. Plant Signal Behav 7: 1349-1353. doi:10.4161/psb.21551. PubMed: 22895103.
|
[74] | Stotz HU, Jikumaru Y, Shimada Y, Sasaki E, Stingl N et al. (2011) Jasmonate-dependent and COI1-independent defense responses against Sclerotinia sclerotiorum in Arabidopsis thaliana: auxin is part of COI1-independent defense signaling. Plant Cell Physiol 52: 1941-1956. doi:10.1093/pcp/pcr127. PubMed: 21937677.
|
[75] | Avila CA, Arevalo-Soliz LM, Lorence A, Goggin FL (2013) Expression of alpha-DIOXYGENASE 1 in tomato and Arabidopsis contributes to plant defenses against aphids. Mol Plant Microbe Interact 26: 977-986. doi:10.1094/MPMI-01-13-0031-R. PubMed: 23634839.
|
[76] | Nakashima K, Yamaguchi-Shinozaki K (2013) ABA signaling in stress-response and seed development. Plant Cell Rep, 32: 959–70. PubMed: 23535869.
|
[77] | Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69: 473-488. doi:10.1007/s11103-008-9435-0. PubMed: 19083153.
|
[78] | de Torres-Zabala M, Truman W, Bennett MH, Lafforgue G, Mansfield JW et al. (2007) Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease. EMBO J 26: 1434-1443. doi:10.1038/sj.emboj.7601575. PubMed: 17304219.
|
[79] | Nakashima K, Yamaguchi-Shinozaki K (2013) ABA signaling in stress-response and seed development. Plant Cell Rep 32: 959-970. doi:10.1007/s00299-013-1418-1. PubMed: 23535869.
|
[80] | Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3: ([MedlinePgn:]) PubMed: 21084388.
|
[81] | Ding X, Cao Y, Huang L, Zhao J, Xu C et al. (2008) Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice. Plant Cell 20: 228-240. doi:10.1105/tpc.107.055657. PubMed: 18192436.
|
[82] | Mutka AM, Fawley S, Tsao T, Kunkel BN (2013) Auxin promotes susceptibility to Pseudomonas syringae via a mechanism independent of suppression of salicylic acid-mediated defenses. Plant J.
|
[83] | Zhang Z, Li Q, Li Z, Staswick PE, Wang M et al. (2007) Dual regulation role of GH3.5 in salicylic acid and auxin signaling during Arabidopsis-Pseudomonas syringae interaction. Plant Physiol 145: 450-464. doi:10.1104/pp.107.106021. PubMed: 17704230.
|
[84] | LeClere S, Tellez R, Rampey RA, Matsuda SP, Bartel B (2002) Characterization of a family of IAA-amino acid conjugate hydrolases from Arabidopsis. J Biol Chem 277: 20446-20452. doi:10.1074/jbc.M111955200. PubMed: 11923288.
|
[85] | Ahuja I, Kissen R, Bones AM (2012) Phytoalexins in defense against pathogens. Trends Plant Sci 17: 73-90. doi:10.1016/j.tplants.2011.11.002. PubMed: 22209038.
|
[86] | Shimada N, Akashi T, Aoki T, Ayabe S (2000) Induction of isoflavonoid pathway in the model legume Lotus japonicus: molecular characterization of enzymes involved in phytoalexin biosynthesis. Plant Sci 160: 37-47. doi:10.1016/S0168-9452(00)00355-1. PubMed: 11164575.
|
[87] | Zabala G, Zou J, Tuteja J, Gonzalez DO, Clough SJ et al. (2006) Transcriptome changes in the phenylpropanoid pathway of Glycine max in response to Pseudomonas syringae infection. BMC Plant Biol 6: 26. doi:10.1186/1471-2229-6-26. PubMed: 17083738.
|
[88] | Bhuiyan NH, Selvaraj G, Wei Y, King J (2009) Role of lignification in plant defense. Plant Signal Behav 4: 158-159. doi:10.4161/psb.4.2.7688. PubMed: 19649200.
|