Zinc RING finger 3 (ZNRF3) and its homolog RING finger 43 (RNF43) antagonize Wnt signaling in adult stem cells by ubiquitinating Frizzled receptors (FZD), which leads to endocytosis of the Wnt receptor. Conversely, binding of ZNRF3/RNF43 to LGR4-6 – R-spondin blocks Frizzled ubiquitination and enhances Wnt signaling. Here, we present crystal structures of the ZNRF3 ectodomain and its complex with R-spondin 1 (RSPO1). ZNRF3 binds RSPO1 and LGR5-RSPO1 with micromolar affinity via RSPO1 furin-like 1 (Fu1) domain. Anonychia-related mutations in RSPO4 support the importance of the observed interface. The ZNRF3-RSPO1 structure resembles that of LGR5-RSPO1-RNF43, though Fu2 of RSPO1 is variably oriented. The ZNRF3-binding site overlaps with trans-interactions observed in 2:2 LGR5-RSPO1 complexes, thus binding of ZNRF3/RNF43 would disrupt such an arrangement. Sequence conservation suggests a single ligand-binding site on ZNRF3, consistent with the proposed competing binding role of ZNRF3/RNF43 in Wnt signaling.
References
[1]
Koo B-K, Spit M, Jordens I, Low TY, Stange DE et al. (2012) Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature 488: 665–669. doi:10.1038/nature11308. PubMed: 22895187.
[2]
Hao H-X, Xie Y, Zhang Y, Charlat O, Oster E et al. (2012) ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner. Nature 485: 195–200. doi:10.1038/nature11019. PubMed: 22575959.
[3]
Zhou Y, Lan J, Wang W, Shi Q, Lan Y et al. (2013) ZNRF3 acts as a tumour suppressor by the Wnt signalling pathway in human gastric adenocarcinoma. J Mol Histol, 44: 555–63. doi:10.1007/s10735-013-9504-9. PubMed: 23504200.
[4]
Jiang X, Hao H-X, Growney JD, Woolfenden S, Bottiglio C et al. (2013) Inactivating mutations of RNF43 confer Wnt dependency in pancreatic ductal adenocarcinoma. Proceedings of the National Academy of Sciences of the USA, 110: 12649–54. doi:10.1073/pnas.1307218110. PubMed: 23847203.
[5]
Ong CK, Subimerb C, Pairojkul C, Wongkham S, Cutcutache I et al. (2012) Exome sequencing of liver fluke-associated cholangiocarcinoma. Nat Genet 44: 690–693. doi:10.1038/ng.2273. PubMed: 22561520.
[6]
Ryland GL, Hunter SM, Doyle MA, Rowley SM, Christie M et al. (2013) RNF43 is a tumour suppressor gene mutated in mucinous tumours of the ovary. J Pathol 229: 469–476. doi:10.1002/path.4134. PubMed: 23096461.
[7]
de Lau W, Barker N, Low TY, Koo B-K, Li VSW et al. (2011) Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature 476: 293–297. doi:10.1038/nature10337. PubMed: 21727895.
[8]
Glinka A, Dolde C, Kirsch N, Huang Y-L, Kazanskaya O et al. (2011) LGR4 and LGR5 are R-spondin receptors mediating Wnt/β-catenin and Wnt/PCP signalling. EMBO Rep 12: 1055–1061. doi:10.1038/embor.2011.175. PubMed: 21909076.
[9]
Carmon KS, Gong X, Lin Q, Thomas A, Liu Q (2011) R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/beta-catenin signaling. Proc Natl Acad Sci U S A 108: 11452–11457. doi:10.1073/pnas.1106083108. PubMed: 21693646.
[10]
Ruffner H, Sprunger J, Charlat O, Leighton-Davies J, Grosshans B et al. (2012) R-Spondin potentiates Wnt/β-catenin signaling through orphan receptors LGR4 and LGR5. PLOS ONE 7: e40976. doi:10.1371/journal.pone.0040976. PubMed: 22815884.
[11]
Barker N, van Es JH, Kuipers J, Kujala P, van den Born M et al. (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449: 1003–1007. doi:10.1038/nature06196. PubMed: 17934449.
[12]
Jaks V, Barker N, Kasper M, van Es JH, Snippert HJ et al. (2008) Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat Genet 40: 1291–1299. doi:10.1038/ng.239. PubMed: 18849992.
[13]
Barker N, Huch M, Kujala P, van de Wetering M, Snippert HJ et al. (2010) Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 6: 25–36. doi:10.1016/j.stem.2009.11.013. PubMed: 20085740.
[14]
Barker N, Rookmaaker MB, Kujala P, Ng A, Leushacke M et al. (2012) Lgr5(+ve) Stem/Progenitor Cells Contribute to Nephron Formation during Kidney Development. Cell Rep 2: 540–552. doi:10.1016/j.celrep.2012.08.018. PubMed: 22999937.
[15]
Huch M, Dorrell C, Boj SF, van Es JH, Li VSW et al. (2013) In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 494: 247–250. doi:10.1038/nature11826. PubMed: 23354049.
[16]
Plaks V, Brenot A, Lawson DA, Linnemann JR, Van Kappel EC et al. (2013) Lgr5-expressing cells are sufficient and necessary for postnatal mammary gland organogenesis. Cell Rep 3: 70–78. doi:10.1016/j.celrep.2012.12.017. PubMed: 23352663.
[17]
Carmon KS, Lin Q, Gong X, Thomas A, Liu Q (2012) LGR5 interacts and cointernalizes with Wnt receptors to modulate Wnt/β-catenin signaling. Mol Cell Biol 32: 2054–2064. doi:10.1128/MCB.00272-12. PubMed: 22473993.
[18]
Peng WC, de Lau W, Forneris F, Granneman JCM, Huch M et al. (2013) Structure of Stem Cell Growth Factor R-spondin 1 in Complex with the Ectodomain of Its Receptor LGR5. Cell Rep 3: 1885–1892. doi:10.1016/j.celrep.2013.06.009. PubMed: 23809763.
[19]
Chen P-H, Chen X, Lin Z, Fang D, He X (2013) The structural basis of R-spondin recognition by LGR5 and RNF43. Genes Dev 27: 1345–1350. doi:10.1101/gad.219915.113. PubMed: 23756651.
[20]
Wang D, Huang B, Zhang S, Yu X, Wu W et al. (2013) Structural basis for R-spondin recognition by LGR4/5/6 receptors. Genes Dev 27: 1339–1344. doi:10.1101/gad.219360.113. PubMed: 23756652.
[21]
Xu K, Xu Y, Rajashankar KR, Robev D, Nikolov DB (2013) Crystal Structures of Lgr4 and Its Complex with R-Spondin1. Structure, 21: 1683–9. doi:10.1016/j.str.2013.07.001. PubMed: 23891289.
[22]
de Lau WBM, Snel B, Clevers HC (2012) The R-spondin protein family. Genome Biol 13: 242. doi:10.1186/gb-2012-13-3-242. PubMed: 22439850.
[23]
Mahon P, Bateman A (2000) The PA domain: a protease-associated domain. Protein Sci 9: 1930–1934. doi:10.1110/ps.9.10.1930. PubMed: 11106166.
[24]
Luo X, Hofmann K (2001) The protease-associated domain: a homology domain associated with multiple classes of proteases. Trends Biochem Sci 26: 147–148. doi:10.1016/S0968-0004(00)01768-0. PubMed: 11246007.
[25]
Jin X, Cheng H, Chen J, Zhu D (2011) RNF13: an emerging RING finger ubiquitin ligase important in cell proliferation. FEBS J 278: 78–84. doi:10.1111/j.1742-4658.2010.07925.x. PubMed: 21078127.
[26]
Blaydon DC, Ishii Y, O'Toole EA, Unsworth HC, Teh M-T et al. (2006) The gene encoding R-spondin 4 (RSPO4), a secreted protein implicated in Wnt signaling, is mutated in inherited anonychia. Nat Genet 38: 1245–1247. doi:10.1038/ng1883. PubMed: 17041604.
[27]
Bergmann C, Senderek J, Anhuf D, Thiel CT, Ekici AB et al. (2006) Mutations in the gene encoding the Wnt-signaling component R-spondin 4 (RSPO4) cause autosomal recessive anonychia. Am J Hum Genet 79: 1105–1109. doi:10.1086/509789. PubMed: 17186469.
[28]
Khan TN, Klar J, Nawaz S, Jameel M, Tariq M et al. (2012) Novel missense mutation in the RSPO4 gene in congenital hyponychia and evidence for a polymorphic initiation codon (p.M1I). BMC Med Genet 13: 120. doi:10.1186/1471-2350-13-120. PubMed: 23234511.
[29]
Wasif N, Ahmad W (2013) A novel nonsense mutation in RSPO4 gene underlies autosomal recessive congenital anonychia in a Pakistani family. Pediatr Dermatol 30: 139–141. doi:10.1111/j.1525-1470.2011.01587.x. PubMed: 22300369.
[30]
Barker N, Clevers H (2010) Leucine-rich repeat-containing G-protein-coupled receptors as markers of adult stem cells. Gastroenterology 138: 1681–1696. doi:10.1053/j.gastro.2010.03.002. PubMed: 20417836.
[31]
Kwon MS, Park B-O, Kim HM, Kim S (2013) Leucine-rich repeat-containing G-protein coupled receptor 5/GPR49 activates G12/13-Rho GTPase pathway. Mol Cells, 36: 267–72. doi:10.1007/s10059-013-0173-z. PubMed: 23912594.
[32]
Ohkawara B, Glinka A, Niehrs C (2011) Rspo3 binds syndecan 4 and induces Wnt/PCP signaling via clathrin-mediated endocytosis to promote morphogenesis. Dev Cell 20: 303–314. doi:10.1016/j.devcel.2011.01.006. PubMed: 21397842.
[33]
Deng C, Reddy P, Cheng Y, Luo C-W, Hsiao C-L et al. (2013) Multi-functional norrin is a ligand for the LGR4 receptor. J Cell Sci, 126: 2060–8. doi:10.1242/jcs.123471. PubMed: 23444378.
[34]
Fafilek B, Krausova M, Vojtechova M, Pospichalova V, Tumova L et al. (2013) Troy, a Tumor Necrosis Factor Receptor Family Member, Interacts With Lgr5 to Inhibit Wnt Signaling in Intestinal Stem Cells. Gastroenterology, 144: 381–91. doi:10.1053/j.gastro.2012.10.048. PubMed: 23142137.
[35]
Durocher Y, Perret S, Thibaudeau E, Gaumond MH, Kamen A et al. (2000) A reporter gene assay for high-throughput screening of G-protein-coupled receptors stably or transiently expressed in HEK293 EBNA cells grown in suspension culture. Anal Biochem 284: 316–326. doi:10.1006/abio.2000.4698. PubMed: 10964415.
[36]
Reeves PJP, Callewaert NN, Contreras RR, Khorana HGH (2002) Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proc Natl Acad Sci U S A 99: 13419–13424. doi:10.1073/pnas.212519299. PubMed: 12370423.
[37]
Leslie A, Powell HR (2007) Processing diffraction data with MOSFLM. Evolving methods for macromolecular crystallography, NATO Science Series Volume 245, pp 41-51.
[38]
Kabsch W (2010) XDS. Acta Crystallogr D Biol Crystallogr 66: 125–132. doi:10.1107/S0907444909047337. PubMed: 20124692.
[39]
Evans PR (2011) An introduction to data reduction: space-group determination, scaling and intensity statistics. Acta Crystallogr D Biol Crystallogr 67: 282–292. doi:10.1107/S090744491003982X. PubMed: 21460446.
[40]
Karplus PA, Diederichs K (2012) Linking crystallographic model and data quality. Science 336: 1030–1033. doi:10.1126/science.1218231. PubMed: 22628654.
Langer G, Cohen SX, Lamzin VS, Perrakis A (2008) Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat Protoc, 3: 1171–9. PubMed: 18600222.
[43]
Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66: 486–501. doi:10.1107/S0907444910007493. PubMed: 20383002.
[44]
Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW et al. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66: 213–221. doi:10.1107/S0907444909052925. PubMed: 20124702.
[45]
Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P et al. (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67: 235–242. doi:10.1107/S0907444910045749. PubMed: 21460441.
[46]
Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM et al. (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66: 12–21. doi:10.1107/S0907444909042073. PubMed: 20057044.
[47]
Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372: 774–797. doi:10.1016/j.jmb.2007.05.022. PubMed: 17681537.
[48]
Holm L, Rosenstr?m P (2010) Dali server: conservation mapping in 3D. Nucleic Acids Res 38: W545–W549. doi:10.1093/nar/gkq366. PubMed: 20457744.
[49]
Schrodinger LLC (2013) The PyMOL Molecular Graphics System, version 1.5.0.4.