This report highlights the phytochemical analysis, antioxidant potential and anticancer activity against breast carcinoma of 70% methanolic extract of lichen, Parmotrema reticulatum (PRME). Phytochemical analysis of PRME confirms the presence of various phytoconstituents like alkaloids, carbohydrates, flavonoids, glycosides, phenols, saponins, tannins, anthraquinones, and ascorbic acid; among which alkaloids, phenols and flavonoids are found in abundant amount. High performance liquid chromatography (HPLC) analysis of PRME revealed the presence of catechin, purpurin, tannic acid and reserpine. Antioxidant activity was evaluated by nine separate methods. PRME showed excellent hydroxyl and hypochlorous radical scavenging as well as moderate DPPH, superoxide, singlet oxygen, nitric oxide and peroxynitrite scavenging activity. Cytotoxicity of PRME was tested against breast carcinoma (MCF-7), lung carcinoma (A549) and normal lung fibroblast (WI-38) using WST-1 method. PRME was found cytotoxic against MCF-7 cells with an IC50 value 130.03±3.11 μg/ml while negligible cytotoxicity was observed on A549 and WI-38 cells. Further flow cytometric study showed that PRME halted the MCF-7 cells in S and G2/M phases and induces apoptosis in dose as well as time dependent manner. Cell cycle arrest was associated with downregulation of cyclin B1, Cdk-2 and Cdc25C as well as slight decrease in the expression of Cdk-1 and cyclin A1 with subsequent upregulation of p53 and p21. Moreover PRME induced Bax and inhibited Bcl-2 expression, which results in increasing Bax/Bcl-2 ratio and activation of caspase cascade. This ultimately leads to PARP degradation and induces apoptosis in MCF-7 cells. It can be hypothesised from the current study that the antioxidant and anticancer potential of the PRME may reside in the phytoconstitutents present in it and therefore, PRME may be used as a possible source of natural antioxidant that may be developed to an anticancer agent.
References
[1]
Kohen R, Nyska A (2002) Oxidation of biological systems: Oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 30: 620–650.
[2]
Kinsella JE, Frankel E, German B, Kanner J (1993) Possible mechanism for the protective role of the antioxidant in wine and plant foods. Food Technol 47: 85–89.
[3]
Lai LS, Chou ST, Chao WW (2001) Studies on the antioxidative activities of Hsian-tsao (Mesona procumbens Hems) leaf gum. J Agr Food Chem 49: 963–968.
[4]
Tadhani MB, Patel VH, Subhash R (2007) In vitro antioxidant activities of Stevia rebaudiana leaves and callus. J Food Compo Anal 20: 323–329.
[5]
Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30: 1191–1212.
[6]
Su D, Cheng Y, Liu M, Liu D, Cui H, et al. (2013) Comparision of Piceid and Resveratrol in antioxidation and antiproliferation activities In Vitro. PLoS One 8: e54505 doi: 10.1371/journal.pone.0054505.
[7]
Shebaby WN, El-Sibai M, Bodman- Smith K, Karam MC, Mroueh M, et al. (2013) The antioxidant and anticancer effects of Wild Carrot oil extract. Phytother Res 27: 737–744.
[8]
Reddy VG, Khanna N, Singh N (2001) Vitamin C augments chemotherapeutic response of cervical carcinoma HeLa cells by stabilizing p53. Biochem Bioph Res Co 282: 409–415.
[9]
GLOBOCAN 2008 (2012) Cancer Fact sheet. Available: http://www.who.int/mediacentre/factsheet?s/fs297/en/.
[10]
Boustie J, Grube M (2005) Lichens - a promising source of bioactive secondary metabolites. Plant Genet Resource 3: 273–283.
[11]
Muller K (2001) Pharmaceutically relevant metabolites from lichens. Appl Microbiol Biot 56: 9–16.
[12]
Liu YQ, Hu XY, Lu T, Cheng YN, Charles Y, et al. (2012) Retigeric acid B exhibits antitumor Activity through suppression of Nuclear Factor-kB signaling in Prostate Cancer Cells in Vitro and in Vivo. PLoS One. 7: e38000 doi: 10.1371/journal.pone.0038000.
[13]
Kosani? M, Rankovi? B (2010) Screening of antimicrobial activity of Some lichen Species In Vitro. Kragujevac J Sci 32: 65–72.
[14]
Manojlovic NT, Vasiljevic PJ, Maskovic PZ, Juskovic M, Bogdanovic-Dusanovic G (2011) Chemical composition, antioxidant, and antimicrobial activities of lichen Umbilicaria cylindrica(L.) Delise (Umbilicariaceae). Evid Based Complement Altern Med 2012: Article ID 452431,8 pages.
[15]
Behera BC, Verma N, Sonone A, Makhija U (2005) Antioxidant and antibacterial activities of lichen Usnea ghattensis in vitro. Biotechnol Lett 27: 991–995.
[16]
Rankovi? BR, Kosani? MM, Stanojkovi? TP (2011) Antioxidant, antimicrobial and anticancer activity of the lichens Cladonia furcata, Lecanora atra and Lecanora muralis. BMC Complement Altern Med 11: 97.
[17]
Verma N, Behera BC, Makhija U (2008) Antioxidant and hepatoprotective activity of a lichen Usnea ghattensis In Vitro. Appl Biochem Biotechnol 151: 167–181.
[18]
Brisdelli F, Perilli M, Sellitri D, Piovano M, Garbarino JA, et al.. (2013) Cytotoxic activity and antioxidant capacity of purified lichen metabolites: An in Vitro study. Phytother Res 27, 431–437.
[19]
Shrestha G, St Clair LL (2013) Lichens: a promising source of antibiotic and anticancer drugs. Phytochemistry Rev 12: 229–244.
[20]
Triggiani D, Ceccarelli D, Tiezzi A, Pisani T, Munzi S, et al. (2009) Antiproliferative activity of lichen extracts on murine myeloma cells. Biologia 64: 59–62.
[21]
Kurokawa S, Lai MJ (2001) Parmelioid lichen genera and species in Taiwan. Mycotaxon 77: 225–284.
[22]
Sati SC, Joshi S (2011) Antibacterial Activity of the Himalayan Lichen Parmotrema nilgherrense extracts. British Microbiol Res J 1: 26–32.
[23]
Tiwari P, Rai H, Upreti DK, Trivedi S, Shukla P (2011) Antifungal Activity of a common Himalayan foliose Lichen Parmotrema tinctorum (Despr. ex Nyl.) Hale. Nature Science 9: 167–171.
[24]
Balaji P, Hariharan GN (2007) In vitro antimicrobial activity of Parmotrema praesorediosum. Res J Botany 2: 54–59.
[25]
Honda NK, Pavan FR, Coelho RG, de Andrade LeiteSR, Micheletti AC, et al. (2010) Antimycobacterial activity of lichen substances. Phytomedicine 17: 328–332.
[26]
Baral B, Maharjan BL (2011) Assessment of antimicrobial and phytochemical potentials of high altitudinal Nepalese lichens. J Microbiol Biotechn Food Sci 1: 98–112.
[27]
Stanly C, Hag Ali DM, Keng CL, Boey PL, Bhatt A (2011) Comparative evaluation of antioxidant activity and total phenolic content of selected lichen species from Malaysia. J Pharm Res 4: 2824.
[28]
Sharma BC, Kalikotay S (2012) Screening of antioxidant activity of lichens Parmotrema reticulatum and Usnea sp. from Darjeeling hills, India. IOSR J Pharm 2: 54–60.
[29]
Sinha SN, Biswas M (2011) Evaluation of antibacterial activity of some lichen from Ravangla, Sikkim, India. Int J Pharm Bios 2: 23–28.
[30]
Awasthi DD (1988) A key to macrolichens of India and Nepal. J Hattori Bot Lab 65: 207–232.
[31]
Divakar PK, Blanco O, Hawksworth DL, Crespo A (2005) Molecular phylogenetic studies on the Parmotrema reticulatum (syn. Rimelia reticulate ) complex, including the confirmation of P. Pseudoreticulatum as a distinct species. The Lichenologist 37: 55–65.
[32]
Harborne JB, Baxter H (1995) Phytochemical dictionary: a handbook of bioactive compounds from plants. Taylor and Francis Ltd: 4 John St-London.
[33]
Kokate CK, Purohit AP, Gokhale SB (2003) Test book of Pharmacognosy, 7th Ed. Nirali Prakashan: 105.
[34]
Hazra B, Biswas S, Mandal N (2008) Antioxidant and free radical scavenging activity of Spondias pinnata.. BMC Complement Altern Med 8: 63.
[35]
Chaudhuri D, Ghate NB, Sarkar R, Mandal N (2012) Phytochemical analysis and evaluation of antioxidant and free radical scavenging activity of Withania somnifera root. Asian J Pharm Clin Res 5: 193–199.
[36]
Ghate NB, Hazra B, Sarkar R, Mandal N (2013) In vitro anticancer activity of Spondias pinnata bark on human lung and breast carcinoma. Cytotechnology: doi 10.1007/s10616-013-9553-7.
[37]
Nawar WF (1996) Lipids in food chemistry, 3rd ed, ed. O. Fennema, 225–320. New York: Marcel Dekker Inc.
[38]
Halliwell B (1991) Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am J Med 91: 14–22.
[39]
Aruoma OI, Halliwell B, Hoey BM, Butter J (1989) The antioxidant action of N-acetylcysteine: Its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic Biol Med 6: 593–597.
[40]
Kochevar EI, Redmond WR (2000) Photosensitized production of singlet oxygen. Method Enzymol 319: 20–28.
Hu W, Yu L, Wang M (2011) Antioxidant and antiproliferative properties of water extract from Mahonia bealei (fort.) carr. leaves. Food Chem Toxicol 49: 799–806.
[43]
Li B, Wang CH, He TC, Yuan CS, Du W (2010) Antioxidants potentiate American ginseng-induced killing of colorectal cancer cells. Cancer Lett 289: 62–70.
[44]
Martinez V, Barber’a O, S’anchez-Parareda J, Marco JA (1987) Phenolic and acetylenic metabolites from Artemisia assoana. Phytochemistry 26: 2619–2624.
[45]
Torres K, Horwitz SB (1998) Mechanisms of taxol-induced cell death are concentration dependent. Cancer Res 58: 3620–3626.
[46]
Sun W, Wang W, Kim J, Keng P, Yang S, et al. (2008) Anti-cancer effect of resveratrol is associated with induction of apoptosis via a mitochondrial pathway alignment. Adv Exp Med Biol 614: 179–186.
[47]
Murray AW (2004) Recycling the Cell Cycle: Cyclins Revisited. Cell 116: 221–234.
[48]
Khan M, Rasul A, Yi F, Zhong L, Ma T (2011) Jaceosidin Induces p53-dependent G2/M Phase Arrest in U87 Glioblastoma Cells. Evi Based Complent Altern Med 12: 3235–3238.
[49]
Yadav V, Sultana S, Yadav J, Saini N (2012) Gatifloxacin Induces S and G2-phase cell cycle arrest in pancreatic cancer cells via p21/p27/p53. PLoS One 7: e47796 doi: 10.1371/journal.pone.0047796.
[50]
Pastorino JG, Chen ST, Tafani M, Snyder JW, Farber JL (1998) The overexpression of Bax produces cell death upon induction of the mitochondrial permeability transition. J Biol Chem 273: 7770–7775.
[51]
Zou H, Li Y, Liu X, Wang X (1999) An APAF-1?cytochrome C multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 274: 11549–11556.
[52]
Wang X (2001) The expanding role of mitochondria in apoptosis. Gene Dev 15: 2922–2933.
[53]
Anto RJ, Mukhopadhyay A, Denning K, Aggarwal BB (2002) Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID cleavage and cytochrome c release: its suppression by ectopic expression of Bcl-2 and Bcl-xl. Carcinogenesis 23: 143–150.
[54]
Rice-Evans CA, Miller NJ, Bolwell PG, Bramley PM, Pridham JB (1995) The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Rad Res 22: 375–383.
[55]
Kessler M, Ubeaud G, Jung L (2003) Anti- and pro-oxidant activity of rutin and quercetin derivatives. J Pharm Pharmacol 55: 131–142.
[56]
Jesus NZT, Falcao HS, Gomes IF, Leite TJA, Lima GRM, et al. (2012) Tannins, peptic ulcer and related mechanisms. Int J Mol Sci 13: 3203–3228.
[57]
Yao LH, Jiang YM, Shi J, Tomás-Barberán FA, Datta N, et al. (2004) Flavonoids in food and their health benefits. Plant Food Hum Nutr 59: 113–122.
[58]
Kumar M, Chandel M, Kumar S, Kaur S (2012) Amelioration of oxidative stress by anthraquinones in various in vitro assays. Asian Pac J Trop Dis S692–S698.
[59]
Isemura M, Saeki K, Kimura T, Hayakawa S, Minami T, et al. (2000) Tea catechins and related polyphenols as anti-cancer agents. Biofactors 13: 81–85.
[60]
Begum S, Naqvi SQZ, Ahmed A, Tauseef A, Bina Shaheen Siddiqui BS (2012) Antimycobacterial and antioxidant activities of reserpine and its derivatives. Natural Prod Res 26: 2084–2088.
[61]
Goldin A, Burton RM, Humphreys SR, Venditti JM (1957) Antileukemic action of reserpine. Science 125: 156–157.