Combining a CD20 Chimeric Antigen Receptor and an Inducible Caspase 9 Suicide Switch to Improve the Efficacy and Safety of T Cell Adoptive Immunotherapy for Lymphoma
Modification of T cells with chimeric antigen receptors (CAR) has emerged as a promising treatment modality for human malignancies. Integration of co-stimulatory domains into CARs can augment the activation and function of genetically targeted T cells against tumors. However, the potential for insertional mutagenesis and toxicities due to the infused cells have made development of safe methods for removing transferred cells an important consideration. We have genetically modified human T cells with a lentiviral vector to express a CD20-CAR containing both CD28 and CD137 co-stimulatory domains, a “suicide gene” relying on inducible activation of caspase 9 (iC9), and a truncated CD19 selectable marker. Rapid expansion (2000 fold) of the transduced T cells was achieved in 28 days after stimulation with artificial antigen presenting cells. Transduced T cells exhibited effective CD20-specific cytotoxic activity in vitro and in a mouse xenograft tumor model. Activation of the iC9 suicide switch resulted in efficient removal of transduced T cells both in vitro and in vivo. Our work demonstrates the feasibility and promise of this approach for treating CD20+ malignancies in a safe and more efficient manner. A phase I clinical trial using this approach in patients with relapsed indolent B-NHL is planned.
References
[1]
Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62: 10–29 doi:10.3322/caac.20138.
[2]
Brentjens RJ, Rivière I, Park JH, Davila ML, Wang X, et al. (2011) Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 118: 4817–4828 doi:10.1182/blood-2011-04-348540.
[3]
Porter DL, Levine BL, Kalos M, Bagg A, June CH (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365: 725–733 doi:10.1056/NEJMoa1103849.
[4]
Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, et al. (2011) T Cells with Chimeric Antigen Receptors Have Potent Antitumor Effects and Can Establish Memory in Patients with Advanced Leukemia. Science Translational Medicine 3: 95ra73–95ra73 doi:10.1126/scitranslmed.3002842.
[5]
Kochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Spaner DE, et al. (2012) B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor–transduced T cells. Blood 119: 2709–2720 doi:10.1182/blood-2011-10-384388.
[6]
Kershaw MH, Westwood JA, Parker LL, Wang G, Eshhar Z, et al. (2006) A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res 12: 6106–6115 doi:10.1158/1078-0432.CCR-06-1183.
[7]
Park JR, Digiusto DL, Slovak M, Wright C, Naranjo A, et al. (2007) Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma. Mol Ther 15: 825–833 doi:10.1038/sj.mt.6300104.
[8]
Lamers CHJ, Sleijfer S, Vulto AG, Kruit WHJ, Kliffen M, et al. (2006) Treatment of Metastatic Renal Cell Carcinoma With Autologous T-Lymphocytes Genetically Retargeted Against Carbonic Anhydrase IX: First Clinical Experience. JCO 24: e20–e22 doi:10.1200/JCO.2006.05.9964.
[9]
Till BG, Jensen MC, Wang J, Chen EY, Wood BL, et al. (2008) Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. Blood 112: 2261–2271 doi:10.1182/blood-2007-12-128843.
[10]
Maher J, Brentjens RJ, Gunset G, Rivière I, Sadelain M (2002) Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta/CD28 receptor. Nat Biotechnol 20: 70–75 doi:10.1038/nbt0102-70.
[11]
Finney HM, Akbar AN, Lawson ADG (2004) Activation of resting human primary T cells with chimeric receptors: costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCR zeta chain. J Immunol 172: 104–113.
[12]
Friedmann-Morvinski D, Bendavid A, Waks T, Schindler D, Eshhar Z (2005) Redirected primary T cells harboring a chimeric receptor require costimulation for their antigen-specific activation. Blood 105: 3087–3093 doi:10.1182/blood-2004-09-3737.
[13]
Zhao Y, Wang QJ, Yang S, Kochenderfer JN, Zheng Z, et al. (2009) A herceptin-based chimeric antigen receptor with modified signaling domains leads to enhanced survival of transduced T lymphocytes and antitumor activity. J Immunol 183: 5563–5574 doi:10.4049/jimmunol.0900447.
[14]
Savoldo B, Ramos CA, Liu E, Mims MP, Keating MJ, et al. (2011) CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J Clin Invest 121: 1822–1826 doi:10.1172/JCI46110.
[15]
Wang J, Jensen M, Lin Y, Sui X, Chen E, et al. (2007) Optimizing adoptive polyclonal T cell immunotherapy of lymphomas, using a chimeric T cell receptor possessing CD28 and CD137 costimulatory domains. Hum Gene Ther 18: 712–725 doi:10.1089/hum.2007.028.
[16]
Carpenito C, Milone MC, Hassan R, Simonet JC, Lakhal M, et al. (2009) Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci U S A 106: 3360–3365 doi:10.1073/pnas.0813101106.
[17]
Zhong X-S, Matsushita M, Plotkin J, Riviere I, Sadelain M (2010) Chimeric Antigen Receptors Combining 4-1BB and CD28 Signaling Domains Augment PI3kinase/AKT/Bcl-XL Activation and CD8+ T Cell–mediated Tumor Eradication. Molecular Therapy 18: 413–420 doi:10.1038/mt.2009.210.
[18]
Till BG, Jensen MC, Wang J, Qian X, Gopal AK, et al. (2012) CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results. Blood 119: 3940–3950 doi:10.1182/blood-2011-10-387969.
[19]
Check E (2002) A tragic setback. Nature 420: 116–118 doi:10.1038/420116a.
[20]
Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, et al. (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302: 415–419 doi:10.1126/science.1088547.
[21]
Brentjens R, Yeh R, Bernal Y, Riviere I, Sadelain M (2010) Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: case report of an unforeseen adverse event in a phase I clinical trial. Mol Ther 18: 666–668 doi:10.1038/mt.2010.31.
[22]
Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, et al. (2010) Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 18: 843–851 doi:10.1038/mt.2010.24.
[23]
Fan L, Freeman KW, Khan T, Pham E, Spencer DM (1999) Improved artificial death switches based on caspases and FADD. Hum Gene Ther 10: 2273–2285 doi:10.1089/10430349950016924.
[24]
Hoyos V, Savoldo B, Quintarelli C, Mahendravada A, Zhang M, et al. (2010) Engineering CD19-specific T lymphocytes with interleukin-15 and a suicide gene to enhance their anti-lymphoma/leukemia effects and safety. Leukemia 24: 1160–1170 doi:10.1038/leu.2010.75.
[25]
Di Stasi A, Tey S-K, Dotti G, Fujita Y, Kennedy-Nasser A, et al. (2011) Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med 365: 1673–1683 doi:10.1056/NEJMoa1106152.
[26]
Gerull S, Beard BC, Peterson LJ, Neff T, Kiem H-P (2007) In vivo selection and chemoprotection after drug resistance gene therapy in a nonmyeloablative allogeneic transplantation setting in dogs. Hum Gene Ther 18: 451–456 doi:10.1089/hum.2006.039.
[27]
Shan D, Press OW, Tsu TT, Hayden MS, Ledbetter JA (1999) Characterization of scFv-Ig constructs generated from the anti-CD20 mAb 1F5 using linker peptides of varying lengths. J Immunol 162: 6589–6595.
[28]
Zhou LJ, Ord DC, Hughes AL, Tedder TF (1991) Structure and domain organization of the CD19 antigen of human, mouse, and guinea pig B lymphocytes. Conservation of the extensive cytoplasmic domain. J Immunol 147: 1424–1432.
[29]
Szymczak AL, Workman CJ, Wang Y, Vignali KM, Dilioglou S, et al. (2004) Correction of multi-gene deficiency in vivo using a single “self-cleaving” 2A peptide-based retroviral vector. Nat Biotechnol 22: 589–594 doi:10.1038/nbt957.
[30]
Becker PS, Taylor JA, Trobridge GD, Zhao X, Beard BC, et al. (2010) Preclinical correction of human Fanconi anemia complementation group A bone marrow cells using a safety-modified lentiviral vector. Gene Ther 17: 1244–1252 doi:10.1038/gt.2010.62.
[31]
James SE, Orgun NN, Tedder TF, Shlomchik MJ, Jensen MC, et al. (2009) Antibody-mediated B-cell depletion before adoptive immunotherapy with T cells expressing CD20-specific chimeric T-cell receptors facilitates eradication of leukemia in immunocompetent mice. Blood 114: 5454–5463 doi:10.1182/blood-2009-08-232967.
[32]
Berger C, Blau CA, Huang M-L, Iuliucci JD, Dalgarno DC, et al. (2004) Pharmacologically regulated Fas-mediated death of adoptively transferred T cells in a nonhuman primate model. Blood 103: 1261–1269 doi:10.1182/blood-2003-08-2908.
[33]
Straathof KC, Pulè MA, Yotnda P, Dotti G, Vanin EF, et al. (2005) An inducible caspase 9 safety switch for T-cell therapy. Blood 105: 4247–4254 doi:10.1182/blood-2004-11-4564.
[34]
Tey S-K, Dotti G, Rooney CM, Heslop HE, Brenner MK (2007) Inducible caspase 9 suicide gene to improve the safety of allodepleted T cells after haploidentical stem cell transplantation. Biol Blood Marrow Transplant 13: 913–924 doi:10.1016/j.bbmt.2007.04.005.
[35]
Berger C, Jensen MC, Lansdorp PM, Gough M, Elliott C, et al. (2008) Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. J Clin Invest 118: 294–305 doi:10.1172/JCI32103.
[36]
Wang X, Berger C, Wong CW, Forman SJ, Riddell SR, et al. (2011) Engraftment of human central memory-derived effector CD8+ T cells in immunodeficient mice. Blood 117: 1888–1898 doi:10.1182/blood-2010-10-310599.
[37]
Milone MC, Fish JD, Carpenito C, Carroll RG, Binder GK, et al. (2009) Chimeric Receptors Containing CD137 Signal Transduction Domains Mediate Enhanced Survival of T Cells and Increased Antileukemic Efficacy In Vivo. Mol Ther 17: 1453–1464 doi:10.1038/mt.2009.83.
[38]
Iuliucci JD, Oliver SD, Morley S, Ward C, Ward J, et al. (2001) Intravenous safety and pharmacokinetics of a novel dimerizer drug, AP1903, in healthy volunteers. J Clin Pharmacol 41: 870–879.