全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Complete Mitochondrial Genomes of Chimpanzee- and Gibbon-Derived Ascaris Isolated from a Zoological Garden in Southwest China

DOI: 10.1371/journal.pone.0082795

Full-Text   Cite this paper   Add to My Lib

Abstract:

Roundworms (Ascaridida: Nematoda), one of the most common soil-transmitted helminths (STHs), can cause ascariasis in various hosts worldwide, ranging from wild to domestic animals and humans. Despite the veterinary and health importance of the Ascaridida species, little or no attention has been paid to roundworms infecting wild animals including non-human primates due to the current taxon sampling and survey bias in this order. Importantly, there has been considerable controversy over the years as to whether Ascaris species infecting non-human primates are the same as or distinct from Ascaris lumbricoides infecting humans. Herein, we first characterized the complete mitochondrial genomes of two representative Ascaris isolates derived from two non-human primates, namely, chimpanzees (Pan troglodytes) and gibbons (Hylobates hoolock), in a zoological garden of southwest China and compared them with those of A. lumbricoides and the congeneric Ascaris suum as well as other related species in the same order, and then used comparative mitogenomics, genome-wide nucleotide sequence identity analysis, and phylogeny to determine whether the parasites from chimpanzees and gibbons represent a single species and share genetic similarity with A. lumbricoides. Taken together, our results yielded strong statistical support for the hypothesis that the chimpanzee- and gibbon-derived Ascaris represent a single species that is genetically similar to A. lumbricoides, consistent with the results of previous morphological and molecular studies. Our finding should enhance public alertness to roundworms originating from chimpanzees and gibbons and the mtDNA data presented here also serves to enrich the resource of markers that can be used in molecular diagnostic, systematic, population genetic, and evolutionary biological studies of parasitic nematodes from either wild or domestic hosts.

References

[1]  Wolstenholme DR (1992) Animal mitochondrial DNA: structure and evolution. Int Rev Cytol 141: 173–216.
[2]  Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27: 1767–1780.
[3]  Hu M, Chilton NB, Gasser RB (2004) The mitochondrial genomics of parasitic nematodes of socio-economic importance: recent progress, and implications for population genetics and systematics. Adv Parasitol 56: 133–212.
[4]  Gissi C, Iannelli F, Pesole G (2008) Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity 101: 301–320.
[5]  Saccone C, Gissi C, Lanave C, Larizza A, Pesole G, et al. (2000) Evolution of the mitochondrial genetic system: an overview. Gene 261: 153–159.
[6]  Blouin MS (2002) Molecular prospecting for cryptic species of nematodes: mitochondrial DNA versus internal transcribed spacer. Int J Parasitol 32: 527–531.
[7]  Gasser RB, Newton SE (2000) Genomic and genetic research on bursate nematodes: significance, implications and prospects. Int J Parasitol 30: 509–534.
[8]  Chowdhury N, Aguirre AA (2001) Helminths of wildlife. Enfield: Science Publishers Inc.
[9]  Acha PN, Szyfres B (2003) Parasitoses. In: Zoonoses and communicable diseases common to man and animals. 3rd edn. Washington DC: Pan American Health Organization. pp. 285–324.
[10]  Hu M, Gasser RB (2006) Mitochondrial genomes of parasitic nematodes - progress and perspectives. Trends Parasitol 22: 78–84.
[11]  Landsoud-Soukate J, Tutin CE, Fernandez M (1995) Intestinal parasites of sympatric gorillas and chimpanzees in the Lope Reserve, Gabon. Ann Trop Med Parasitol 89: 73–79.
[12]  Ocaido M, Dranzoa C, Cheli P (2003) Gastrointestinal parasites of baboons (Papio anubis) interacting with humans in West Bugwe Forest Reserve, Uganda. Afr J Ecol 41: 356–359.
[13]  Yang GY, Zhang ZH (2013) Parasitic diseases of wildlife. Beijing: Science Press. 476 p.
[14]  Kalema-Zikusoka G, Rothman JM, Fox MT (2005) Intestinal parasites and bacteria of mountain gorillas (Gorilla beringei beringei) in Bwindi Impenetrable National Park, Uganda. Primates 46: 59–63.
[15]  Okulewicz A, Lonc E, Borgsteede FH (2002) Ascarid nematodes in domestic and wild terrestrial mammals. Pol J Vet Sci 5: 277–281.
[16]  Li Y, Niu LL, Wang Q, Zhang ZH, Chen ZG, et al. (2012) Molecular characterization and phylogenetic analysis of ascarid nematodes from twenty-one species of captive wild mammals based on mitochondrial and nuclear sequences. Parasitology 139: 1329–1338.
[17]  Niu LL, Chen SJ, Wang T, Gu XB, Yan YB, et al. (2012) Genetic relationship of ascarid nematodes from giant panda and seven other species of captive wild mammals based on COXI and COXII genes. Acta Veterinaria et Zootechnica Sinica 43: 1645–1650.
[18]  Nejsum P, Gr?ndahl C, Murrell KD (2006) Molecular evidence for the infection of zoo chimpanzees by pig Ascaris. Vet Parasitol 139: 203–210.
[19]  Nejsum P, Bertelsen MF, Betson M, Stothard JR, Murrell KD (2010) Molecular evidence for sustained transmission of zoonotic Ascaris suum among zoo chimpanzees (Pan troglodytes). Vet Parasitol 171: 273–276.
[20]  Hu M, Jex AR, Campbell BE, Gasser RB (2007) Long PCR amplification of the entire mitochondrial genome from individual helminths for direct sequencing. Nat Protoc 2: 2339–2344.
[21]  Jex AR, Littlewood DT, Gasser RB (2010) Toward next-generation sequencing of mitochondrial genomes - focus on parasitic worms of animals and biotechnological implications. Biotechnol Adv 28: 151–159.
[22]  Okimoto R, Macfarlane JL, Clary DO, Wolstenholme DR (1992) The mitochondrial genomes of two nematodes, Caenorhabditis elegans and Ascaris suum. Genetics 130: 471–498.
[23]  Kim KH, Eom KS, Park JK (2006) The complete mitochondrial genome of Anisakis simplex (Ascaridida: Nematoda) and phylogenetic implications. Int J Parasitol 36: 319–328.
[24]  Li MW, Lin RQ, Song HQ, Wu XY, Zhu XQ (2008) The complete mitochondrial genomes for three Toxocara species of human and animal health significance. BMC genomics 9: 224.
[25]  Wickramasinghe S, Yatawara L, Rajapakse RP, Agatsuma T (2009) Toxocara vitulorum (Ascaridida: Nematoda): mitochondrial gene content, arrangement and composition compared with other Toxocara species. Mol Biochem Parasitol 166: 89–92.
[26]  Xie Y, Zhang ZH, Wang CD, Lan JC, Li Y, et al. (2011) Complete mitochondrial genomes of Baylisascaris schroederi, Baylisascaris ailuri and Baylisascaris transfuga from giant panda, red panda and polar bear. Gene 482: 59–67.
[27]  Xie Y, Zhang ZH, Niu LL, Wang Q, Wang CD, et al. (2011) The Mitochondrial Genome of Baylisascaris procyonis. PloS one 6: e27066.
[28]  Liu GH, Wu CY, Song HQ, Wei SJ, Xu MJ, et al. (2012) Comparative analyses of the complete mitochondrial genomes of Ascaris lumbricoides and Ascaris suum from humans and pigs. Gene 492: 110–116.
[29]  Lin RQ, Liu GH, Zhang Y, D’Amelio S, Zhou DH, et al. (2012) Contracaecum rudolphii B: Gene content, arrangement and composition of its complete mitochondrial genome compared with Anisakis simplex sl. Exp Parasitol 130: 135–140.
[30]  Park YC, Kim W, Park JK (2011) The complete mitochondrial genome of human parasitic roundworm, Ascaris lumbricoides. Mitochondrial DNA 22: 91–93.
[31]  Park JK, Sultana T, Lee SH, Kang S, Kim HK, et al. (2011) Monophyly of clade III nematodes is not supported by phylogenetic analysis of complete mitochondrial genome sequences. BMC genomics 12: 392.
[32]  Jex AR, Waeschenbach A, Littlewood DT, Hu M, Gasser RB (2008) The mitochondrial genome of Toxocara canis. PLoS Negl Trop Dis 2: e273.
[33]  Linnaeus C (1758) Systema Naturae per regna tria naturae secundum classes, ordines, genera, species cum characteribus, differentiis, synonymis, locis. Tomus I. Editio Decima, reformata. Stockholm: Laur Salvius. 824 p.
[34]  Sprent JF (1968) Notes on Ascaris and Toxascaris, with a definition of Baylisascaris gen. nov. Parasitology 58: 185–198.
[35]  Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882.
[36]  Wyman SK, Jansen RK, Boore JL (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20: 3252–3255.
[37]  Altschul SF, Madden TL, Sch?ffer AA, Zhang J, Zhang Z, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402.
[38]  Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24: 1596–1599.
[39]  Hu M, Chilton NB, Gasser RB (2002) The mitochondrial genomes of the human hookworms, Ancylostoma duodenale and Necator americanus (Nematoda: Secernentea). Int J Parasitol 32: 145–158.
[40]  Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 2496–2497.
[41]  Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I (2004) VISTA: computational tools for comparative genomics. Nucleic Acids Res 32: 273–279.
[42]  Notredame C, Higgins DG, Heringa J (2000) T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol 302: 205–217.
[43]  Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17: 540–552.
[44]  Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755.
[45]  Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817–818.
[46]  Jia WZ, Yan HB, Ni XW, Cao P, Lou ZZ, et al. (2011) Research progress on analyses of complete mitochondrial genomes for nematodes. Scientia Agricultura Sinica 44: 1255–1265.
[47]  Yatawara L, Wickramasinghe S, Rajapakse RP, Agatsuma T (2010) The complete mitochondrial genome of Setaria digitata (Nematoda: Filarioidea): Mitochondrial gene content, arrangement and composition compared with other nematodes. Mol Biochem Parasitol 173: 32–38.
[48]  Jex AR, Waeschenbach A, Hu M, van Wyk JA, Beveridge I, et al. (2009) The mitochondrial genomes of Ancylostoma caninum and Bunostomum phlebotomum - two hookworms of animal health and zoonotic importance. BMC genomics 10: 79.
[49]  Douglas SE, Penny SL (1999) The plastid genome of the cryptophyte alga, Guillardia theta: complete sequence and conserved synteny groups confirm its common ancestry with red algae. J Mol Evol 48: 236–244.
[50]  Ghikas DV, Kouvelis VN, Typas MA (2006) The complete mitochondrial genome of the entomopathogenic fungus Metarhizium anisopliae var. anisopliae: gene order and trn gene clusters reveal a common evolutionary course for all Sordariomycetes, while intergenic regions show variation. Arch Microbiol 185: 393–401.
[51]  Perna NT, Kocher TD (1995) Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J Mol Evol 41: 353–358.
[52]  Reyes A, Gissi C, Pesole G, Saccone C (1998) Asymmetrical directional mutation pressure in the mitochondrial genome of mammals. Mol Biol Evol 15: 957–966.
[53]  Saccone C, De Giorgi C, Gissi C, Pesole G, Reyes A (1999) Evolutionary genomics in Metazoa: the mitochondrial DNA as a model system. Gene 238: 195–209.
[54]  Sharp PM, Matassi G (1994) Codon usage and genome evolution. Curr Opin Genet Dev 4: 851–860.
[55]  Duret L, Mouchiroud D (1999) Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis. Proc Natl Acad Sci U S A 96: 4482–4487.
[56]  Okimoto R, Macfarlane JL, Wolstenholme DR (1994) The mitochondrial ribosomal RNA genes of the nematodes Caenorhabditis elegans and Ascaris suum: consensus secondary - structure models and conserved nucleotide sets for phylogenetic analysis. J Mol Evol 39: 598–613.
[57]  Jeon HK, Lee KH, Kim KH, Hwang UW, Eom KS (2005) Complete sequence and structure of the mitochondrial genome of the human tapeworm, Taenia asiatica (Platyhelminthes; Cestoda). Parasitology 130: 717–726.
[58]  Kurabayashi A, Ueshima R (2000) Complete sequence of the mitochondrial DNA of the primitive opisthobranch gastropod Pupa strigosa: systematic implication of the genome organization. Mol Biol Evol 17: 266–277.
[59]  Shao R, Campbell NJ, Barker SC (2001) Numerous gene rearrangements in the mitochondrial genome of the wallaby louse, Heterodoxus macropus (Phthiraptera). Mol Biol Evol 18: 858–865.
[60]  Shadel GS, Clayton DA (1997) Mitochondrial DNA maintenance in vertebrates. Annu Rev Biochem 66: 409–435.
[61]  Gasser RB, Jabbar A, Mohandas N, Schnyder M, Deplazes P, et al. (2012) Mitochondrial genome of Angiostrongylus vasorum: comparison with congeners and implications for studying the population genetics and epidemiology of this parasite. Infect Genet Evol 12: 1884–1891.
[62]  Dangoudoubiyam S, Vemulapalli R, Kazacos KR (2009) PCR assays for detection of Baylisascaris procyonis eggs and larvae. J Parasitol 95: 571–577.
[63]  Gatcombe RR, Jothikumar N, Dangoudoubiyam S, Kazacos KR, Hill VR (2010) Evaluation of a molecular beacon real-time PCR assay for detection of Baylisascaris procyonis in different soil types and water samples. Parasitol Res 106: 499–504.
[64]  Yang Z, Nielsen R (2000) Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol 17: 32–43.
[65]  Liu GH, Gasser RB, Otranto D, Xu MJ, Shen JL, et al. (2013) Mitochondrial genome of the eyeworm, Thelazia callipaeda (Nematoda: Spirurida), as the first representative from the family Thelaziidae. PLoS Negl Trop Dis 7: e2029.
[66]  Hurst LD (2002) The Ka/Ks ratio: diagnosing the form of sequence evolution. Trends Genet 18: 486.
[67]  Hartwich G (1974) Keys to genera of the Ascaridoidea. In: Anderson R, Chabaud A, Willmott S, editors. CIH keys to the nematode parasites of vertebrates. Farnham Royal: Commonwealth Agricultural Bureaux. pp. 1–14.
[68]  Nadler SA, Hudspeth DS (1998) Ribosomal DNA and phylogeny of the Ascaridoidea (Nemata: Secernentea): implications for morphological evolution and classification. Mol Phylogenet Evol 10: 221–236.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133