Impact of Different Training Modalities on Anthropometric and Metabolic Characteristics in Overweight/Obese Subjects: A Systematic Review and Network Meta-Analysis
Background The aim of this systematic review of randomized controlled trials was to compare the effects of aerobic training (AET), resistance training (RT), and combined aerobic and resistance training (CT) on anthropometric parameters, blood lipids, and cardiorespiratory fitness in overweight and obese subjects. Methods Electronic searches for randomized controlled trials were performed in MEDLINE, EMBASE and the Cochrane Trial Register. Inclusion criteria were: Body Mass Index: ≥25 kg/m2, 19+ years of age, supervised exercise training, and a minimum intervention period of 8 weeks. Anthropometric outcomes, blood lipids, and cardiorespiratory fitness parameters were included. Pooled effects were calculated by inverse-variance random effect pairwise meta-analyses and Bayesian random effects network meta-analyses. Findings 15 trials enrolling 741 participants were included in the meta-analysis. Compared to RT, AET resulted in a significantly more pronounced reduction of body weight [mean differences (MD): -1.15 kg, p = 0.04], waist circumference [MD: -1.10 cm, p = 0.004], and fat mass [MD: -1.15 kg, p = 0.001] respectively. RT was more effective than AET in improving lean body mass [MD: 1.26 kg, p<0.00001]. When comparing CT with RT, MD in change of body weight [MD: -2.03 kg, p<0.0001], waist circumference [MD: -1.57 cm, p = 0.0002], and fat mass [MD: -1.88 kg, p<0.00001] were all in favor of CT. Results from the network meta-analyses confirmed these findings. Conclusion Evidence from both pairwise and network meta-analyses suggests that CT is the most efficacious means to reduce anthropometric outcomes and should be recommended in the prevention and treatment of overweight, and obesity whenever possible.
References
[1]
WHO (2011) Obesity and Overweight. pp. Fact sheet No.311.
[2]
Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, et al. (2009) The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health 9: 88.
[3]
Galani C, Schneider H (2007) Prevention and treatment of obesity with lifestyle interventions: review and meta-analysis. Int J Public Health 52: 348–359.
[4]
Haskell WL, Lee IM, Pate RR, Powell KE, Blair SN, et al. (2007) Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Circulation 116: 1081–1093.
[5]
Kelley GA, Kelley KS (2008) Efficacy of aerobic exercise on coronary heart disease risk factors. Prev Cardiol 11: 71–75.
[6]
Thorogood A, Mottillo S, Shimony A, Filion KB, Joseph L, et al. (2011) Isolated aerobic exercise and weight loss: a systematic review and meta-analysis of randomized controlled trials. Am J Med 124: 747–755.
[7]
Kodama S, Tanaka S, Saito K, Shu M, Sone Y, et al. (2007) Effect of aerobic exercise training on serum levels of high-density lipoprotein cholesterol: a meta-analysis. Arch Intern Med 167: 999–1008.
[8]
Kelley GA, Kelley KS (2006) Effects of aerobic exercise on C-reactive protein, body composition, and maximum oxygen consumption in adults: a meta-analysis of randomized controlled trials. Metabolism 55: 1500–1507.
[9]
Ismail I, Keating SE, Baker MK, Johnson NA (2012) A systematic review and meta-analysis of the effect of aerobic vs. resistance exercise training on visceral fat. Obes Rev 13: 68–91.
[10]
Strasser B, Arvandi M, Siebert U (2012) Resistance training, visceral obesity and inflammatory response: a review of the evidence. Obes Rev 13: 578–591.
[11]
Strasser B, Siebert U, Schobersberger W (2010) Resistance training in the treatment of the metabolic syndrome: a systematic review and meta-analysis of the effect of resistance training on metabolic clustering in patients with abnormal glucose metabolism. Sports Med 40: 397–415.
[12]
Kelley GA, Kelley KS (2000) Progressive resistance exercise and resting blood pressure : A meta-analysis of randomized controlled trials. Hypertension 35: 838–843.
[13]
Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6: e1000097.
[14]
Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, et al. (2011) The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ 343: d5928.
[15]
Higgins JP, Green S (updated March 2011) Cochrane Handbook of systematic reviews, Version 5.1.0
Begg CB, Mazumdar M (1994) Operating characteristics of a rank correlation test for publication bias. Biometrics 50: 1088–1101.
[18]
Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315: 629–634.
[19]
Dias S, Sutton AJ, Ades AE, Welton NJ (2013) Evidence synthesis for decision making 2: a generalized linear modeling framework for pairwise and network meta-analysis of randomized controlled trials. Med Decis Making 33: 607–617.
[20]
Lunn DJ, Thomas A, Best N, D S (2000) WinBUGS - a Bayesian modelling framework: concepts, structure, and extensibility. Statistics and Computing. Statistics and Computing 10 325–337.
[21]
Dias S, Welton NJ, Sutton AJ, Ades AE (2011) NICE DSU Technical Support Document 2: A Generalised Linear Modelling Framework for Pairwise and Network Meta-Analysis of Randomised Controlled Trials. (available at: http://www.nicedsu.org.uk, accessed on 05.09.2013).
[22]
Brooks SP, A G (1998) Alternative methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics 7 434–455.
[23]
Dias S, Welton NJ, Caldwell DM, Ades AE (2010) Checking consistency in mixed treatment comparison meta-analysis. Stat Med 29: 932–944.
[24]
Dias S, Welton NJ, Sutton AJ, Caldwell DM, Lu G, et al. (2013) Evidence synthesis for decision making 4: inconsistency in networks of evidence based on randomized controlled trials. Med Decis Making 33: 641–656.
[25]
Wallace MB, Mills BD, Browning CL (1997) Effects of cross-training on markers of insulin resistance/hyperinsulinemia. Med Sci Sports Exerc 29: 1170–1175.
[26]
Stensvold D, Tjonna AE, Skaug EA, Aspenes S, Stolen T, et al. (2010) Strength training versus aerobic interval training to modify risk factors of metabolic syndrome. J Appl Physiol 108: 804–810.
[27]
Ross R, Rissanen J (1994) Mobilization of visceral and subcutaneous adipose tissue in response to energy restriction and exercise. Am J Clin Nutr 60: 695–703.
[28]
Rice B, Janssen I, Hudson R, Ross R (1999) Effects of aerobic or resistance exercise and/or diet on glucose tolerance and plasma insulin levels in obese men. Diabetes Care 22: 684–691.
[29]
Potteiger JA, Claytor RP, Hulver MW, Hughes MR, Carper MJ, et al. (2012) Resistance exercise and aerobic exercise when paired with dietary energy restriction both reduce the clinical components of metabolic syndrome in previously physically inactive males. European Journal of Applied Physiology 112: 2035–2044.
[30]
Ahmadizad S, Haghighi AH, Hamedinia MR (2007) Effects of resistance versus endurance training on serum adiponectin and insulin resistance index. Eur J Endocrinol 157: 625–631.
[31]
Banz WJ, Maher MA, Thompson WG, Bassett DR, Moore W, et al. (2003) Effects of resistance versus aerobic training on coronary artery disease risk factors. Experimental Biology and Medicine 228: 434–440.
[32]
Bateman LA, Slentz CA, Willis LH, Shields AT, Piner LW, et al. (2011) Comparison of aerobic versus resistance exercise training effects on metabolic syndrome (from the Studies of a Targeted Risk Reduction Intervention Through Defined Exercise - STRRIDE-AT/RT). Am J Cardiol 108: 838–844.
[33]
Davidson LE, Hudson R, Kilpatrick K, Kuk JL, McMillan K, et al. (2009) Effects of exercise modality on insulin resistance and functional limitation in older adults: a randomized controlled trial. Arch Intern Med 169: 122–131.
[34]
Donges CE, Duffield R, Drinkwater EJ (2010) Effects of resistance or aerobic exercise training on interleukin-6, C-reactive protein, and body composition. Med Sci Sports Exerc 42: 304–313.
[35]
Janssen I, Fortier A, Hudson R, Ross R (2002) Effects of an energy-restrictive diet with or without exercise on abdominal fat, intermuscular fat, and metabolic risk factors in obese women. Diabetes Care 25: 431–438.
[36]
Martins RA, Neves AP, Coelho-Silva MJ, Verissimo MT, Teixeira AM (2010) The effect of aerobic versus strength-based training on high-sensitivity C-reactive protein in older adults. European Journal of Applied Physiology 110: 161–169.
[37]
Fenkci S, Sarsan A, Rota S, Ardic F (2006) Effects of resistance or aerobic exercises on metabolic parameters in obese women who are not on a diet. Adv Ther 23: 404–413.
[38]
Willis LH, Slentz CA, Bateman LA, Shields AT, Piner LW, et al. (2012) Effects of aerobic and/or resistance training on body mass and fat mass in overweight or obese adults. J Appl Physiol 113: 1831–1837.
[39]
Ballor DL, Harvey-Berino JR, Ades PA, Cryan J, Calles-Escandon J (1996) Contrasting effects of resistance and aerobic training on body composition and metabolism after diet-induced weight loss. Metabolism 45: 179–183.
[40]
Fisher G, Hyatt TC, Hunter GR, Oster RA, Desmond RA, et al. (2011) Effect of diet with and without exercise training on markers of inflammation and fat distribution in overweight women. Obesity (Silver Spring) 19: 1131–1136.
[41]
Sarsan A, Ardic F, Ozgen M, Topuz O, Sermez Y (2006) The effects of aerobic and resistance exercises in obese women. Clin Rehabil 20: 773–782.
[42]
Park SK, Park JH, Kwon YC, Kim HS, Yoon MS, et al. (2003) The effect of combined aerobic and resistance exercise training on abdominal fat in obese middle-aged women. J Physiol Anthropol Appl Human Sci 22: 129–135.
[43]
Smutok MA, Reece C, Kokkinos PF, Farmer C, Dawson P, et al. (1993) Aerobic versus strength training for risk factor intervention in middle-aged men at high risk for coronary heart disease. Metabolism 42: 177–184.
[44]
Pouliot MC, Despres JP, Lemieux S, Moorjani S, Bouchard C, et al. (1994) Waist circumference and abdominal sagittal diameter: best simple anthropometric indexes of abdominal visceral adipose tissue accumulation and related cardiovascular risk in men and women. Am J Cardiol 73: 460–468.
[45]
de Koning L, Merchant AT, Pogue J, Anand SS (2007) Waist circumference and waist-to-hip ratio as predictors of cardiovascular events: meta-regression analysis of prospective studies. Eur Heart J 28: 850–856.
[46]
Mourier A, Gautier JF, De Kerviler E, Bigard AX, Villette JM, et al. (1997) Mobilization of visceral adipose tissue related to the improvement in insulin sensitivity in response to physical training in NIDDM. Effects of branched-chain amino acid supplements. Diabetes Care 20: 385–391.
[47]
Pratley R, Nicklas B, Rubin M, Miller J, Smith A, et al. (1994) Strength training increases resting metabolic rate and norepinephrine levels in healthy 50- to 65-yr-old men. J Appl Physiol 76: 133–137.
[48]
Kraemer WJ, Volek JS, Clark KL, Gordon SE, Puhl SM, et al. (1999) Influence of exercise training on physiological and performance changes with weight loss in men. Med Sci Sports Exerc 31: 1320–1329.
[49]
Nelson ME, Fiatarone MA, Morganti CM, Trice I, Greenberg RA, et al. (1994) Effects of high-intensity strength training on multiple risk factors for osteoporotic fractures. A randomized controlled trial. JAMA 272: 1909–1914.
[50]
Lee DC, Sui X, Artero EG, Lee IM, Church TS, et al. (2011) Long-term effects of changes in cardiorespiratory fitness and body mass index on all-cause and cardiovascular disease mortality in men: the Aerobics Center Longitudinal Study. Circulation 124: 2483–2490.
[51]
Blair SN, Kohl HW 3rd, Paffenbarger RS Jr, Clark DG, Cooper KH, et al. (1989) Physical fitness and all-cause mortality. A prospective study of healthy men and women. JAMA 262: 2395–2401.
[52]
Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, et al. (2009) Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA 301: 2024–2035.