[1] | Chen X, Zhou X, Wong STC (2006) Automated segmentation, classification, and tracking of cancer cell nuclei in time-lapse microscopy. IEEE Trans Biomed Eng 53: 762-766. doi:10.1109/TBME.2006.870201. PubMed: 16602586.
|
[2] | Yarrow JC, Perlman ZE, Westwood NJ, Mitchison TJ (2004) A high-throughput cell migration assay using scratch wound healing, a comparison of image-based readout methods. BMC Biotechnology 4.
|
[3] | Lang P, Yeow K, Nichols A, Scheer A (2006) Cellular imaging in drug discovery. Nat Rev Drug Discov 5: 343-356. doi:10.1038/nrd2008. PubMed: 16582878.
|
[4] | Murphy DB (2001) Fundamentals of Light Microscopy and Electronic Imaging. John Wiley & Sons.
|
[5] | Machacek M, Danuser G (2006) Morphodynamic profiling of protrusion phenotypes. Biophys J 90: 1439-1452. doi:10.1529/biophysj.105.070383. PubMed: 16326902.
|
[6] | Hand AJ, Sun T, Barber DC, Hose DR, MacNeil S (2009) Automated tracking of migrating cells in phase-contrast video microscopy sequences using image registration. J Microsc 234: 62-79. doi:10.1111/j.1365-2818.2009.03144.x. PubMed: 19335457.
|
[7] | Zhaozheng Y, Kanade T (2011) Restoring artifact-free microscopy image sequences. Biomedical Imaging: From Nano to Macro, 2011 IEEE International. Symposium on. Pp: 909-913.
|
[8] | Yin Z, Li K, Kanade T, Chen M (2010) Understanding the Optics to Aid Microscopy Image Segmentation. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010. Springer Berlin Heidelberg. pp. 209-217.
|
[9] | Beucher S, Meyer F (1993) The morphological approach to segmentation: the watershed transformation. Mathematical morphology in image processing. Optical Engineering 34: 433-481.
|
[10] | Debeir O, Adanja I, Warzée N, Van Ham P, Decaestecker C (2008) Phase contrast image segmentation by weak watershed transform assembly. In: Secondary Debeir O, Adanja I, Warzée N, Van Ham P, Decaestecker C, editors. Secondary Phase contrast image segmentation by weak watershed transform assembly. pp. 724-727.
|
[11] | Bradhurst CJ, Boles W, Xiao Y (2008) Segmentation of bone marrow stromal cells in phase contrast microscopy images. In: Secondary Bradhurst CJ, Boles W, Xiao Y, editors. Secondary Segmentation of bone marrow stromal cells in phase contrast microscopy images.
|
[12] | Kaynig V, Fuchs T, Buhmann JM (2010) Neuron geometry extraction by perceptual grouping in sstem images. Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on. pp. 2902-2909.
|
[13] | Jain V, Bollmann B, Richardson M, Berger DR, Helmstaedter MN et al. (2010) Boundary learning by optimization with topological constraints. Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on. pp. 2488-2495.
|
[14] | Chan TF, Vese LA (2001) Active contours without edges. Image Processing, IEEE Transactions On 10: 266-277. doi:10.1109/83.902291.
|
[15] | Xie X, Mirmehdi M (2008) MAC: Magnetostatic Active Contour Model. IEEE Trans Pattern Anal Mach Intell 30: 632-646. doi:10.1109/TPAMI.2007.70737. PubMed: 18276969.
|
[16] | Paragios N (2000) Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Transactions on Pattern Analysis and Machine Intelligence 22: 266-280. doi:10.1109/34.841758.
|
[17] | Caselles V, Kimmel R, Sapiro G (1995) Geodesic active contours. In: Secondary Caselles, R. KimmelG. Sapiro. Secondary Geodesic active contours. pp. 694-699.
|
[18] | Bresson X, Esedo .?lu S, Vandergheynst P, Thiran J-P, Osher S (2007) Fast Global Minimization of the Active Contour/Snake Model. Journal of Mathematical Imaging and Vision 28: 151-167.
|
[19] | Cremers D, Sochen N, Schn?rr C (2006) A Multiphase Dynamic Labeling Model for Variational Recognition-driven Image Segmentation. International Journal of Computer Vision 66: 67-81. doi:10.1007/s11263-005-3676-z.
|
[20] | Vese L, Chan T (2002) A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50: 271-293. doi:10.1023/A:1020874308076.
|
[21] | Vazquez-Reina A, Miller E, Pfister H (2009) Multiphase geometric couplings for the segmentation of neural processes. Computer Vision and Pattern Recognition, 2009 CVPR 2009 IEEE Conference on. pp. 2020-2027.
|
[22] | Li F, Zhou X, Zhao H, Wong STC (2009) Cell segmentation using front vector flow guided active contours. 12th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI. pp. 609-616. PubMed: 20426162.
|
[23] | Ambühl ME, Brepsant C, Meister JJ, Verkhovsky AB, Sbalzarini IF (2012) High-resolution cell outline segmentation and tracking from phase-contrast microscopy images. J Microsc 245: 161-170. doi:10.1111/j.1365-2818.2011.03558.x. PubMed: 21999192.
|
[24] | Ray N, Acton ST, Ley K (2002) Tracking leukocytes in vivo with shape and size constrained active contours. IEEE Trans Med Imaging 21: 1222-1235. doi:10.1109/TMI.2002.806291. PubMed: 12585704.
|
[25] | Pluempitiwiriyawej C, Moura JMF, Wu YJL, Ho C (2005) STACS: New active contour scheme for cardiac MR image segmentation. IEEE Trans Med Imaging 24: 593-603. doi:10.1109/TMI.2005.843740. PubMed: 15889547.
|
[26] | Tsai A, Yezzi A Jr, Wells W, Tempany C, Tucker D et al. (2003) A shape-based approach to the segmentation of medical imagery using level sets. IEEE Trans Med Imaging 22: 137-154. doi:10.1109/TMI.2002.808355. PubMed: 12715991.
|
[27] | Figueiredo IN, Figueiredo PN, Stadler G, Ghattas O, Araujo A (2010) Variational Image Segmentation for Endoscopic Human Colonic Aberrant Crypt Foci. IEEE Trans Med Imaging 29: 998-1011. doi:10.1109/TMI.2009.2036258. PubMed: 19923042.
|
[28] | Schoenemann T, Kahl F, Cremers D (2009) Curvature regularity for region-based image segmentation and inpainting: A linear programming relaxation. Computer Vision, 2009 IEEE 12th International Conference on. pp. 17-23.
|
[29] | Pock T, Chambolle A, Cremers D, Bischof H (2009) A convex relaxation approach for computing minimal partitions. Computer Vision and Pattern Recognition, 2009 CVPR 2009 IEEE Conference on. pp. 810-817.
|
[30] | Unsworth CP, Holloway H, Delivopoulos E, Murray F, Simpson C et al. (2011) Patterning and detailed study of human hNT astrocytes on parylene-C/silicon dioxide substrates to the single cell level. Biomaterials 32: 6541-6550. doi:10.1016/j.biomaterials.2011.05.041. PubMed: 21641029.
|
[31] | Unsworth CP, Coghill G (2006) Excessive noise injection training of neural networks for markerless tracking in obscured and segmented environments. Neural Comput 18: 2122-2145. doi:10.1162/neco.2006.18.9.2122. PubMed: 16846389.
|
[32] | Wang DD, Bordey A (2008) The astrocyte odyssey. Prog Neurobiol 86: 342-367. PubMed: 18948166.
|
[33] | Barres BA (2008) The Mystery and Magic of Glia: A Perspective on Their Roles in Health and Disease. Neuron 60: 430-440. doi:10.1016/j.neuron.2008.10.013. PubMed: 18995817.
|
[34] | Zerlin M, Levison SW, Goldman JE (1995) Early patterns of migration, morphogenesis, and intermediate filament expression of subventricular zone cells in the postnatal rat forebrain. J Neurosci 15: 7238-7249. PubMed: 7472478.
|
[35] | Unsworth CP, Delivopoulos E, Gillespie T, Murray AF (2011) Isolating single primary rat hippocampal neurons and astrocytes on ultra-thin patterned parylene-C/silicon dioxide substrates. Biomaterials 32: 2566-2574. doi:10.1016/j.biomaterials.2010.12.017. PubMed: 21232788.
|
[36] | Unsworth CP, Holloway H, Delivopoulos E, Murray AF, Simpson MC et al. (2011) Patterning and detailed study of human hNT astrocytes on parylene-C/silicon dioxide substrates to the single cell level. Biomaterials 32: 6541-6550. doi:10.1016/j.biomaterials.2011.05.041. PubMed: 21641029.
|
[37] | Nejati A, Unsworth CP, Graham ES (2012) Improving active contour methods for tracking endothelial cells by the removal of low-confidence edge segments. In: Secondary Nejati A, Unsworth CP, Graham ES, editors. Secondary Improving active contour methods for tracking endothelial cells by the removal of low-confidence edge segments. pp. 5368-5371.
|
[38] | Burkert K, Moodley K, Angel CE, Brooks A, Graham ES (2012) Detailed analysis of inflammatory and neuromodulatory cytokine secretion from human NT2 astrocytes using multiplex bead array. Neurochem Int 60: 573-580. doi:10.1016/j.neuint.2011.09.002. PubMed: 21939706.
|
[39] | Goodfellow CE, Graham ES, Dragunow M, Glass M (2011) Characterisation of NTera2/D1 cells as a model system for the investigation of cannabinoid function in human neurons and astrocytes. J Neurosci Res 89: 1685-1697. doi:10.1002/jnr.22692. PubMed: 21674570.
|
[40] | Abercrombie M (1980) The crawling movement of metazoan cells. Proceedings of the Royal Society of London Series A - - Journal of Biological Sciences 207: 129-147. doi:10.1098/rspb.1980.0017.
|
[41] | Lee J, Ishihara A, Theriot JA, Jacobson K (1993) Principles of locomotion for simple-shaped cells. Nature 362: 167-171. doi:10.1038/362167a0. PubMed: 8450887.
|
[42] | Evans E (1993) New physical concepts for cell amoeboid motion. Biophys J 64: 1306-1322. doi:10.1016/S0006-3495(93)81497-8. PubMed: 8494986.
|
[43] | Mogilner A, Marland E, Bottino D (2001) A minimal model of locomotion applied to the steady gliding movement of fish keratocyte cells. Mathematical Models for Biological Pattern Formation: 269-293.
|
[44] | Peskin CS, Odell GM, Oster GF (1993) Cellular motions and thermal fluctuations: The Brownian ratchet. Biophys J 65: 316-324. doi:10.1016/S0006-3495(93)81035-X. PubMed: 8369439.
|
[45] | Vasioukhin V, Bauer C, Yin M, Fuchs E (2000) Directed actin polymerization is the driving force for epithelial cell- cell adhesion. Cell 100: 209-219. doi:10.1016/S0092-8674(00)81559-7. PubMed: 10660044.
|
[46] | Horwitz AR, Parsons JT (1999) Cell migration - Movin' on. Science 286: 1102-1103. doi:10.1126/science.286.5442.1102. PubMed: 10610524.
|
[47] | Friedl P, Wolf K (2010) Plasticity of cell migration: A multiscale tuning model. J Cell Biol 188: 11-19. doi:10.1083/JCB1885OIA11. PubMed: 19951899.
|
[48] | Xu C, Yezzi A Jr., Prince JL (2000) On the relationship between parametric and geometric active contours. In: Secondary Xu C, Yezzi A, Jr., Prince JL, editors. Secondary On the relationship between parametric and geometric active contours. pp. 483-489.
|
[49] | Amini AA, Tehrani S, Weymouth TE (1988) Using dynamic programming for minimizing the energy of active contours in the presence of hard constraints. In: Secondary Amini AA, Tehrani S, Weymouth TE, editors. Secondary Using dynamic programming for minimizing the energy of active contours in the presence of hard constraints. pp. 95-99.
|
[50] | Amini AA, Weymouth TE, Jain RC (1990) Using dynamic programming for solving variational problems in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 12: 855-867. doi:10.1109/34.57681.
|
[51] | Deriche R (1987) Using Canny's criteria to derive a recursively implemented optimal edge detector. International Journal of Computer Vision 1: 167-187. doi:10.1007/BF00123164.
|
[52] | Deriche R (1988) Fast algorithms for low-level vision. In: Secondary Deriche R, editor editors. Secondary Fast algorithms for low-level vision. pp. 434-438.
|
[53] | Kass M, Witkin A, Terzopoulos D (1987) Snakes: Active Contour Models. In: Secondary Kass M, Witkin A, Terzopoulos D, editors. Secondary Snakes: Active Contour Models. pp. 259-268.
|
[54] | McInerney T, Terzopoulos D (1996) Deformable models in medical image analysis. In: Secondary McInerney T, Terzopoulos D, editors. Secondary Deformable models in medical image analysis. IEEE. pp. 171-180.
|
[55] | Terzopoulos D, Witkin A, Kass M (1988) Constraints on deformable models:Recovering 3D shape and nonrigid motion. Artificial Intelligence 36: 91-123. doi:10.1016/0004-3702(88)90080-X.
|
[56] | Andrey P, Boudier T (2006) Adaptive active contours (snakes) for the segmentation of complex structures in biological images. Centre de Recherche Public Henri Tudor Copyright Notice. p. 181.
|
[57] | Dunn JC (1973) Fuzzy relative of the isodata process and its use in detecting compact well-separated clusters. J Cybern 3: 32-57. doi:10.1080/01969727308546046.
|
[58] | Ali S, Madabhushi A (2012) An Integrated Region-, Boundary-, Shape-Based Active Contour for Multiple Object Overlap Resolution in Histological Imagery. Medical Imaging, IEEE Transactions On 31: 1448-1460. doi:10.1109/TMI.2012.2190089.
|