全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Sequence Divergence and Conservation in Genomes of Helicobacter cetorum Strains from a Dolphin and a Whale

DOI: 10.1371/journal.pone.0083177

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background and Objectives Strains of Helicobacter cetorum have been cultured from several marine mammals and have been found to be closely related in 16 S rDNA sequence to the human gastric pathogen H. pylori, but their genomes were not characterized further. Methods The genomes of H. cetorum strains from a dolphin and a whale were sequenced completely using 454 technology and PCR and capillary sequencing. Results These genomes are 1.8 and 1.95 mb in size, some 7–26% larger than H. pylori genomes, and differ markedly from one another in gene content, and sequences and arrangements of shared genes. However, each strain is more related overall to H. pylori and its descendant H. acinonychis than to other known species. These H. cetorum strains lack cag pathogenicity islands, but contain novel alleles of the virulence-associated vacuolating cytotoxin (vacA) gene. Of particular note are (i) an extra triplet of vacA genes with ≤50% protein-level identity to each other in the 5′ two-thirds of the gene needed for host factor interaction; (ii) divergent sets of outer membrane protein genes; (iii) several metabolic genes distinct from those of H. pylori; (iv) genes for an iron-cofactored urease related to those of Helicobacter species from terrestrial carnivores, in addition to genes for a nickel co-factored urease; and (v) members of the slr multigene family, some of which modulate host responses to infection and improve Helicobacter growth with mammalian cells. Conclusions Our genome sequence data provide a glimpse into the novelty and great genetic diversity of marine helicobacters. These data should aid further analyses of microbial genome diversity and evolution and infection and disease mechanisms in vast and often fragile ocean ecosystems.

References

[1]  Lee A, O′Rourke J (1993) Gastric bacteria other than Helicobacter pylori. Gastroenterol Clin North Am 22: 21–42.
[2]  Solnick JV, Vandamme P (2001) Taxonomy of the Helicobacter Genus. In: Mobley HLT, Mendz GL, Hazell SL, editors. Helicobacter pylori: Physiology and Genetics. Washington (DC): ASM Press; 2001. Chapter 5. pp 39–52
[3]  Blanchard TG, Nedrud JG (2012) Laboratory maintenance of Helicobacter species. Curr Protoc Microbiol. Chapter 8: Unit8B.1 DOI: 10.1002/9780471729259.mc08b01s24.
[4]  Cover TL, Blaser MJ (2009) Helicobacter pylori in health and disease. Gastroenterology 136: 1863–1873.
[5]  Yamaoka Y (2010) Mechanisms of disease: Helicobacter pylori virulence factors. Nat Rev Gastroenterol Hepatol 7: 629–641.
[6]  Suerbaum S, Josenhans C (2007) Helicobacter pylori evolution and phenotypic diversification in a changing host. Nat Rev Microbiol 5: 441–452.
[7]  Herrera PM, Mendez M, Velapati?o B, Santiva?ez L, Balqui J, et al. (2008) DNA-level diversity and relatedness of Helicobacter pylori strains in shantytown families in Peru and transmission in a developing-country setting. J Clin Microbiol 46: 3912–3918.
[8]  Harper CG, Feng Y, Xu S, Taylor NS, Kinsel M, et al. (2002) Helicobacter cetorum sp. nov., a urease-positive Helicobacter species isolated from dolphins and whales. J Clin Microbiol 40: 4536–4543.
[9]  Harper CG, Xu S, Rogers AB, Feng Y, Shen Z, et al. (2003) Isolation and characterization of novel Helicobacter spp. from the gastric mucosa of harp seals Phoca groenlandica. Dis Aquat Organ 57: 1–9.
[10]  Goldman CG, Matteo MJ, Loureiro JD, Almuzara M, Barberis C, et al. (2011) Novel gastric helicobacters and oral campylobacters are present in captive and wild cetaceans. Vet Microbiol 152: 138–145.
[11]  Goldman CG, Matteo MJ, Loureiro JD, Degrossi J, Teves S, et al. (2009) Detection of Helicobacter and Campylobacter spp. from the aquatic environment of marine mammals. Vet Microbiol 133: 287–291.
[12]  Goldman CG, Loureiro JD, Matteo MJ, Catalano M, Gonzalez AB, et al. (2009) Helicobacter spp. from gastric biopsies of stranded South American fur seals (Arctocephalus australis). Res Vet Sci 86: 18–21.
[13]  McLaughlin RW, Zheng JS, Chen MM, Zhao QZ, Wang D (2011) Detection of Helicobacter in the fecal material of the endangered Yangtze finless porpoise Neophocaena phocaenoides asiaeorientalis. Dis Aquat Organ 95: 241–245.
[14]  Eppinger M, Baar C, Linz B, Raddatz G, Lanz C, et al. (2006) Who ate whom? Adaptive Helicobacter genomic changes that accompanied a host jump from early humans to large felines. PLoS Genet 2: e120.
[15]  García-Amado MA, Al-Soud WA, Borges-Landaéz P, Contreras M, Cede?o S, et al. (2007) Non-pylori Helicobacteraceae in the upper digestive tract of asymptomatic Venezuelan subjects: detection of Helicobacter cetorum-like and Candidatus Wolinella africanus-like DNA. Helicobacter 12: 553–558.
[16]  Wittekindt NE, Padhi A, Schuster SC, Qi J, Zhao F, et al. (2010) Nodeomics: pathogen detection in vertebrate lymph nodes using meta-transcriptomics. PLoS One 18: e13432.
[17]  Frias-Lopez J, Zerkle AL, Bonheyo GT, Fouke BW (2002) Partitioning of bacterial communities between seawater and healthy, black band diseased, and dead coral surfaces. Appl Environ Microbiol 68: 2214–2228.
[18]  Webster NS, Xavier JR, Freckelton M, Motti CA, Cobb R (2008) Shifts in microbial and chemical patterns within the marine sponge Aplysina aerophoba during a disease outbreak. Environ Microbiol 10: 3366–3376.
[19]  Sweet M, Bythell J (2012) Ciliate and bacterial communities associated with White Syndrome and Brown Band Disease in reef-building corals. Environ Microbiol 14: 2184–2199.
[20]  Nakagawa S, Takaki Y, Shimamura S, Reysenbach AL, Takai K, et al. (2007) Deep-sea vent epsilon-proteobacterial genomes provide insights into emergence of pathogens. Proc Natl Acad Sci U S A 104: 12146–12150.
[21]  Beinart RA, Sanders JG, Faure B, Sylva SP, Lee RW, et al. (2012) Evidence for the role of endosymbionts in regional-scale habitat partitioning by hydrothermal vent symbioses. Proc Natl Acad Sci U S A 109: E3241–3250.
[22]  Kersulyte D, Lee W, Subramaniam D, Anant S, Herrera P, et al. (2009) Helicobacter pylori's plasticity zones are novel transposable elements. PLoS One 4: e6859.
[23]  Kersulyte D, Kalia A, Gilman RH, Mendez M, Herrera P, et al. (2010) Helicobacter pylori from Peruvian Amerindians: traces of human migrations in strains from remote Amazon, and genome sequence of an Amerind strain. PLoS One 5: e15076.
[24]  Li L, Stoeckert CJ, Jr, Roos DS (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13: 2178–2189.
[25]  Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30: 772–780.
[26]  Abascal F, Zardoya R, Telford MJ (2010) TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res 38 (Web Server issue):W7–13.
[27]  Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, et al. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59: 307–321.
[28]  Rice P, Longden I, Bleasby A (2000) EMBOSS: The European Molecular Biology Open Software Suite. Trends in Genetics 16: 276–277.
[29]  Meier-Kolthoff JP, Auch AF, Klenk H-P, G?ker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14 60.
[30]  Baltrus DA, Amieva MR, Covacci A, Lowe TM, Merrell DS, et al. (2008) The complete genome sequence of Helicobacter pylori strain G27. J Bacteriol 191: 447–448.
[31]  Schott T, Kondadi PK, H?nninen ML, Rossi M (2011) Comparative genomics of Helicobacter pylori and the human-derived Helicobacter bizzozeronii CIII-1 strain reveal the molecular basis of the zoonotic nature of non-pylori gastric Helicobacter infections in humans. BMC Genomics 12: 534.
[32]  Cover TL, Blanke SR (2005) Helicobacter pylori VacA, a paradigm for toxin multifunctionality. Nat Rev Microbiol. 3: 320–332.
[33]  Chambers MG, Pyburn TM, González-Rivera C, Collier SE, Eli I, et al. (2013) Structural analysis of the oligomeric states of Helicobacter pylori VacA toxin. J Mol Biol 425: 524–535.
[34]  Gangwer KA, Shaffer CL, Suerbaum S, Lacy DB, Cover TL, et al. (2010) Molecular evolution of the Helicobacter pylori vacuolating toxin gene VacA. J Bacteriol 192: 6126–6135.
[35]  Kim IJ, Blanke SR (2012) Remodeling the host environment: modulation of the gastric epithelium by the Helicobacter pylori vacuolating toxin (VacA). Front Cell Infect Microbiol 2: 37.
[36]  Dailidiene D, Dailide G, Ogura K, Zhang M, Mukhopadhyay AK, et al. (2004) Helicobacter acinonychis: Genetic and rodent infection studies of a Helicobacter pylori-like gastric pathogen of cheetahs and other big cats. J Bacteriol 186: 356–365.
[37]  Sause WE, Castillo AR, Ottemann KM (2012) The Helicobacter pylori autotransporter ImaA (HP0289) modulates the immune response and contributes to host colonization. Infect Immun 80: 2286–2296.
[38]  Fischer W, Prassl S, Haas R (2009) Virulence mechanisms and persistence strategies of the human gastric pathogen Helicobacter pylori. Curr Top Microbiol Immunol 337: 129–171.
[39]  Backert S, Selbach M (2008) Role of type IV secretion in Helicobacter pylori pathogenesis. Cell Microbiol 10: 1573–1581.
[40]  Atherton JC (2006) The pathogenesis of Helicobacter pylori-induced gastro-duodenal diseases. Annu Rev Pathol 63–96.
[41]  Wroblewski LE, Peek RM Jr, Wilson KT (2010) Helicobacter pylori and gastric cancer: factors that modulate disease risk. Clin Microbiol Rev 23: 713–739.
[42]  Tan S, Noto JM, Romero-Gallo J, Peek RM Jr, Amieva MR (2011) Helicobacter pylori perturbs iron trafficking in the epithelium to grow on the cell surface. PLoS Pathog 7: e1002050.
[43]  Ogura M, Perez JC, Mittl PR, Lee HK, Dailide G, et al. (2007) Helicobacter pylori evolution: lineage-specific adaptations in homologs of eukaryotic Sel1-like genes. PLoS Comput Biol 3: e151.
[44]  Sachs G, Weeks DL, Melchers K, Scott DR (2003) The gastric biology of Helicobacter pylori. Annu Rev Physiol 65: 349–369.
[45]  Stoof J, Breijer S, Pot RG, van der Neut D, Kuipers EJ, et al. (2008) Inverse nickel-responsive regulation of two urease enzymes in the gastric pathogen Helicobacter mustelae. Environ Microbiol 10: 2586–2597.
[46]  Carter EL, Tronrud DE, Taber SR, Karplus PA, Hausinger RP (2011) Iron-containing urease in a pathogenic bacterium. Proc Natl Acad Sci U S A 108: 13095–13099.
[47]  Dumrese C, Slomianka L, Ziegler U, Choi SS, Kalia A, et al. (2009) The secreted Helicobacter cysteine-rich protein A causes adherence of human monocytes and differentiation into a macrophage-like phenotype. FEBS Lett 583: 1637–1643.
[48]  Putty K, Marcus SA, Mittl PRE, Bogadi LE, Hunter AM, et al. (2013) Robustness of Helicobacter pylori infection conferred by context-variable redundancy among cysteine-rich paralogs. PLoS ONE 8: e59560.
[49]  Roschitzki B, Schauer S, Mittl PR (2011) Recognition of host proteins by Helicobacter cysteine-rich protein C. Curr Microbiol 63: 239–249.
[50]  Lehmann JS, Fouts DE, Haft DH, Cannella AP, Ricaldi JN, et al. (2013) Pathogenomic Inference of Virulence-Associated Genes in Leptospira interrogans. PLoS Negl Trop Dis 7: e2468.
[51]  Rohrer S, Holsten L, Weiss E, Benghezal M, Fischer W, et al. (2012) Multiple pathways of plasmid DNA transfer in Helicobacter pylori. PLoS One 7: e45623.
[52]  Dwivedi GR, Sharma E, Rao DN (2013) Helicobacter pylori DprA alleviates restriction barrier for incoming DNA. Nucleic Acids Res 41: 3274–3288.
[53]  Alm RA, Bina J, Andrews BM, Doig P, Hancock RE, et al. (2000) Comparative genomics of Helicobacter pylori: analysis of the outer membrane protein families. Infect Immun 68: 4155–4168.
[54]  Kersulyte D, Akopyants NS, Clifton SW, Roe BA, Berg DE (1998) Novel sequence organization and insertion specificity of IS605 and IS606: chimaeric transposable elements of Helicobacter pylori. Gene 223: 175–186.
[55]  Kersulyte D, Mukhopadhyay AK, Shirai M, Nakazawa T, Berg DE (2000) Functional organization and insertion specificity of IS607, a chimeric element of Helicobacter pylori. J Bacteriol 182: 5300–5308.
[56]  Kersulyte D, Velapati?o B, Dailide G, Mukhopadhyay AK, Ito Y, et al. (2002) Transposable element ISHp608 of Helicobacter pylori: nonrandom geographic distribution, functional organization, and insertion specificity. J Bacteriol 184: 992–1002.
[57]  Kersulyte D, Kalia A, Zhang M, Lee HK, Subramaniam D, et al. (2004) Sequence organization and insertion specificity of the novel chimeric ISHp609 transposable element of Helicobacter pylori. J Bacteriol 186: 7521–7258.
[58]  Fischer W, Windhager L, Rohrer S, Zeiller M, Karnholz A, et al. (2010) Strain-specific genes of Helicobacter pylori: genome evolution driven by a novel type IV secretion system and genomic island transfer. Nucleic Acids Res 38: 6089–6101.
[59]  Luo CH, Chiou PY, Yang CY, Lin NT (2012) Genome, integration, and transduction of a novel temperate phage of Helicobacter pylori. J Virol 86: 8781–8792.
[60]  Uchiyama J, Takeuchi H, Kato S, Takemura-Uchiyama I, Ujihara T, et al. (2012) Complete genome sequences of two Helicobacter pylori bacteriophages isolated from Japanese patients. J Virol 86: 11400–11401.
[61]  Lehours P, Vale FF, Bjursell MK, Melefors O, Advani R, et al. (2011) Genome sequencing reveals a phage in Helicobacter pylori. MBio 15: 2.
[62]  Doolittle WF (2012) Population genomics: how bacterial species form and why they don't exist. Curr Biol 22: R451–R453.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133