全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

ERK5 Activation by Gq-Coupled Muscarinic Receptors Is Independent of Receptor Internalization and β-Arrestin Recruitment

DOI: 10.1371/journal.pone.0084174

Full-Text   Cite this paper   Add to My Lib

Abstract:

G-protein-coupled receptors (GPCRs) are known to activate both G protein- and β-arrestin-dependent signalling cascades. The initiation of mitogen-activated protein kinase (MAPK) pathways is a key downstream event in the control of cellular functions including proliferation, differentiation, migration and apoptosis. Both G proteins and β-arrestins have been reported to mediate context-specific activation of ERK1/2, p38 and JNK MAPKs. Recently, the activation of ERK5 MAPK by Gq-coupled receptors has been described to involve a direct interaction between Gαq and two novel effectors, PKCζ and MEK5. However, the possible contribution of β-arrestin towards this pathway has not yet been addressed. In the present work we sought to investigate the role of receptor internalization processes and β-arrestin recruitment in the activation of ERK5 by Gq-coupled GPCRs. Our results show that ERK5 activation is independent of M1 or M3 muscarinic receptor internalization. Furthermore, we demonstrate that phosphorylation-deficient muscarinic M1 and M3 receptors are still able to fully activate the ERK5 pathway, despite their reported inability to recruit β-arrestins. Indeed, the overexpression of Gαq, but not that of β-arrestin1 or β-arrestin2, was found to potently enhance ERK5 activation by GPCRs, whereas silencing of β-arrestin2 expression did not affect the activation of this pathway. Finally, we show that a β-arrestin-biased mutant form of angiotensin II (SII; Sar1-Ile4-Ile8 AngII) failed to promote ERK5 phosphorylation in primary cardiac fibroblasts, as compared to the natural ligand. Overall, this study shows that the activation of ERK5 MAPK by model Gq-coupled GPCRs does not depend on receptor internalization, β-arrestin recruitment or receptor phosphorylation but rather is dependent on Gαq-signalling.

References

[1]  Pierce KL, Premont RT, Lefkowitz RJ (2002) Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3: 639–650. Available: http://www.ncbi.nlm.nih.gov/pubmed/12209?124. Accessed 27 October 2012 doi:10.1038/nrm908. PubMed: 12209124.
[2]  Sorkin A, von Zastrow M (2009) Endocytosis and signalling: intertwining molecular networks. Nat Rev Mol Cell Biol 10: 609–622. doi:10.1038/nrm2748. PubMed: 19696798.
[3]  DeWire SM, Ahn S, Lefkowitz RJ, Shenoy SK (2007) β-arrestins and Cell Signaling. Annu Rev Physiol 69: 483–510. Available: http://www.annualreviews.org/doi/abs/10.?1146/annurev.physiol.69.022405.154749. Accessed 5 November 2012 doi:10.1146/annurev.physiol.69.022405.154749. PubMed: 17305471.
[4]  Ahn S, Shenoy SK, Wei H, Lefkowitz RJ (2004) Differential kinetic and spatial patterns of beta-arrestin and G protein-mediated ERK activation by the angiotensin II receptor. J Biol Chem 279: 35518–35525. Available: http://www.ncbi.nlm.nih.gov/pubmed/15205?453. Accessed 6 November 2012 doi:10.1074/jbc.M405878200. PubMed: 15205453.
[5]  Wei H, Ahn S, Shenoy SK, Karnik SS, Hunyady L et al. (2003) Independent beta-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2. Proc Natl Acad Sci U S A 100: 10782–10787. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=196880&tool=pmcentrez&?rendertype=abstract. doi:10.1073/pnas.1834556100. PubMed: 12949261.
[6]  Gáborik Z, Jagadeesh G, Zhang M, Sp?t A, Catt KJ et al. (2003) The role of a conserved region of the second intracellular loop in AT1 angiotensin receptor activation and signaling. Endocrinology 144: 2220–2228. Available: http://www.ncbi.nlm.nih.gov/pubmed/12746?278. Accessed 29 May 2013 doi:10.1210/en.2002-0135. PubMed: 12746278.
[7]  Fukuhara S, Marinissen MJ, Chiariello M, Gutkind JS (2000) Signaling from G protein-coupled receptors to ERK5/Big MAPK 1 involves Galpha q and Galpha 12/13 families of heterotrimeric G proteins. Evidence for the existence of a novel Ras AND Rho-independent pathway. J Biol Chem 275: 21730–21736. Available: http://www.ncbi.nlm.nih.gov/pubmed/10781?600. Accessed 16 September 2010 doi:10.1074/jbc.M002410200. PubMed: 10781600.
[8]  García-Hoz C, Sánchez-Fernández G, Díaz-Meco MT, Moscat J, Mayor F et al. (2010) G alpha(q) acts as an adaptor protein in protein kinase C zeta (PKCzeta)-mediated ERK5 activation by G protein-coupled receptors (GPCR). J Biol Chem 285: 13480–13489. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=2859508&tool=pmcentrez?&rendertype=abstract. Accessed 23 November 2010 doi:10.1074/jbc.M109.098699. PubMed: 20200162.
[9]  García-Hoz C, Sánchez-Fernández G, García-Escudero R, Fernández-Velasco M, Palacios-García J et al. (2012) Protein Kinase C (PKC)ζ-mediated Gαq Stimulation of ERK5 Protein Pathway in Cardiomyocytes and Cardiac Fibroblasts. J Biol Chem 287: 7792–7802. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=3293562&tool=pmcentrez?&rendertype=abstract. Accessed 19 March 2012 doi:10.1074/jbc.M111.282210. PubMed: 22232556.
[10]  Torrecilla I, Spragg EJ, Poulin B, McWilliams PJ, Mistry SC et al. (2007) Phosphorylation and regulation of a G protein-coupled receptor by protein kinase CK2. J Cell Biol 177: 127–137. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=2064117&tool=pmcentrez?&rendertype=abstract. Accessed 13 November 2012 doi:10.1083/jcb.200610018. PubMed: 17403928.
[11]  Kong KC, Butcher AJ, McWilliams P, Jones D, Wess J et al. (2010) M3-muscarinic receptor promotes insulin release via receptor phosphorylation/arrestin-dependent activation of protein kinase D1. Proc Natl Acad Sci U S A 107: 21181–21186. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=3000281&tool=pmcentrez?&rendertype=abstract. Accessed 15 June 2011 doi:10.1073/pnas.1011651107. PubMed: 21078968.
[12]  Ward RJ, Alvarez-Curto E, Milligan G (2011) Using the Flp-In TM T-RexTM system to regulate GPCR expression. Methods Mol Biol 746: 21–37. Available: http://www.ncbi.nlm.nih.gov/pubmed/21607?850. Accessed 16 April 2013 doi:10.1007/978-1-61779-126-0_2. PubMed: 21607850.
[13]  Kim J, Ahn S, Rajagopal K, Lefkowitz RJ (2009) Independent beta-arrestin2 and Gq/protein kinase Czeta pathways for ERK stimulated by angiotensin type 1A receptors in vascular smooth muscle cells converge on transactivation of the epidermal growth factor receptor. J Biol Chem 284: 11953–11962. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=2673264&tool=pmcentrez?&rendertype=abstract. Accessed 10 August 2011 doi:10.1074/jbc.M808176200. PubMed: 19254952.
[14]  Budd DC, Rae a, Tobin a B (1999) Activation of the mitogen-activated protein kinase pathway by a Gq/11-coupled muscarinic receptor is independent of receptor internalization. J Biol Chem 274: 12355–12360. Available: http://www.ncbi.nlm.nih.gov/pubmed/10212?206.
[15]  Moore C. a C, Milano SK, Benovic JL (2007) Regulation of receptor trafficking by GRKs and arrestins. Annu Rev Physiol 69: 451–482. Available: . http://www.ncbi.nlm.nih.gov/pubmed/17037?978 . Accessed 28 May 2013.
[16]  Tolbert LM, Lameh J (1996) Human muscarinic cholinergic receptor Hm1 internalizes via clathrin-coated vesicles. J Biol Chem 271: 17335–17342. Available: http://www.ncbi.nlm.nih.gov/pubmed/86633?85. doi:10.1074/jbc.271.29.17335. PubMed: 8663385.
[17]  Popova JS, Rasenick MM (2004) Clathrin-mediated endocytosis of m3 muscarinic receptors. Roles for Gbetagamma and tubulin. J Biol Chem 279: 30410–30418. Available: http://www.ncbi.nlm.nih.gov/pubmed/15117?940. Accessed 14 October 2013 doi:10.1074/jbc.M402871200. PubMed: 15117940.
[18]  Shmuel M, Nodel-Berner E, Hyman T (2007) Caveolin 2 regulates endocytosis and trafficking of the M1 muscarinic receptor in MDCK epithelial cells. Mol Biol Cell 18: 1570 –1585. Available: http://www.molbiolcell.org/cgi/content/a?bstract/18/5/1570. Accessed 16 September 2011 PubMed: 17314410.
[19]  Geetha T, Wooten MW (2003) Association of the atypical protein kinase C-interacting protein p62/ZIP with nerve growth factor receptor TrkA regulates receptor trafficking and Erk5 signaling. J Biol Chem 278: 4730–4739. Available: http://www.ncbi.nlm.nih.gov/pubmed/12471?037. Accessed 18 August 2010 doi:10.1074/jbc.M208468200. PubMed: 12471037.
[20]  McDonald PH, Chow CW, Miller WE, Laporte SA, Field ME et al. (2000) Beta-arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science 290: 1574–1577. Available: http://www.ncbi.nlm.nih.gov/pubmed/11090?355. Accessed 26 December 2012 doi:10.1126/science.290.5496.1574. PubMed: 11090355.
[21]  Song X, Coffa S, Fu H, Gurevich VV (2009) How does arrestin assemble MAPKs into a signaling complex? J Biol Chem 284: 685–695. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=2610502&tool=pmcentrez?&rendertype=abstract. Accessed 2 April 2013 PubMed: 19001375.
[22]  Luttrell LM, Roudabush FL, Choy EW, Miller WE, Field ME et al. (2001) Activation and targeting of extracellular signal-regulated kinases by beta-arrestin scaffolds. Proc Natl Acad Sci U S A 98: 2449–2454. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=30158&tool=pmcentrez&r?endertype=abstract. doi:10.1073/pnas.041604898. PubMed: 11226259.
[23]  Violin JD, DeWire SM, Yamashita D, Rominger DH, Nguyen L et al. (2010) Selectively engaging β-arrestins at the angiotensin II type 1 receptor reduces blood pressure and increases cardiac performance. J Pharmacol Exp Ther 335: 572–579. Available: . http://www.ncbi.nlm.nih.gov/pubmed/20801?892. Accessed 26 November 2012. doi:10.1124/jpet.110.173005. PubMed: 20801892.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133