Identification of Cardiovascular Risk Components in Urban Chinese with Metabolic Syndrome and Application to Coronary Heart Disease Prediction: A Longitudinal Study
Background Metabolic syndrome (MetS) is proposed as a predictor for cardiovascular disease (CVD). It involves the mechanisms of insulin resistance, obesity, inflammation process of atherosclerosis, and their complex relationship in the metabolic network. Therefore, more cardiovascular risk-related biomarkers within this network should be considered as components of MetS in order to improve the prediction of CVD. Methods Factor analysis was performed in 5311 (4574 males and 737 females) Han Chinese subjects with MetS to extract CVD-related factors with specific clinical significance from 16 biomarkers tested in routine health check-up. Logistic regression model, based on an extreme case-control design with 445 coronary heart disease (CHD) patients and 890 controls, was performed to evaluate the extracted factors used to identify CHD. Then, Cox model, based on a cohort design with 1923 subjects followed up for 5 years, was conducted to validate their predictive effects. Finally, a synthetic predictor (SP) was created by weighting each factor with their risks for CHD to develop a risk matrix to predicting CHD. Results Eight factors were obtained from both males and females with a similar pattern. The AUC to classify CHD under the extreme case-control suggested that SP might serve as a useful tool in identifying CHD with 0.994 (95%CI 0.984-0.998) for males and 0.998 (95%CI 0.982-1.000) for females respectively. In the cohort study, the AUC to predict CHD was 0.871 (95%CI 0.851-0.889) for males and 0.899 (95%CI 0.873-0.921) for females, highlighting that SP was a powerful predictor for CHD. The SP-based 5-year CHD risk matrix provided as convenient tool for CHD risk appraisal. Conclusions Eight factors were extracted from sixteen biomarkers in subjects with MetS and the SP adds to new insights into studies of prediction of CHD risk using data from routine health check-up.
References
[1]
Lakka HM, Laaksonen DE, Lakka TA, Niskanen LK, Kumpusalo E et al. (2002) The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA 288: 2709-2716. doi:10.1001/jama.288.21.2709. PubMed: 12460094.
[2]
Scott R, Donoghoe M, Watts GF, O'Brien R, Pardy C et al. (2011) Impact of metabolic syndrome and its components on cardiovascular disease event rates in 4900 patients with type 2 diabetes assigned to placebo in the FIELD randomised trial. Cardiovasc Diabetol 10: 102. doi:10.1186/1475-2840-10-102. PubMed: 22104275.
[3]
Sattar N, McConnachie A, Shaper AG, Blauw GJ, Buckley BM et al. (2008) Can metabolic syndrome usefully predict cardiovascular disease and diabetes? Outcome data from two prospective studies. Lancet 371: 1927-1935. doi:10.1016/S0140-6736(08)60602-9. PubMed: 18501419.
[4]
Hanson RL, Imperatore G, Bennett PH, Knowler WC (2002) Components of the "metabolic syndrome" and incidence of type 2 diabetes. Diabetes 51: 3120-3127. doi:10.2337/diabetes.51.10.3120. PubMed: 12351457.
[5]
Metabolic syndrome study cooperation group of Chinese diabetes society (2004) Suggestions about metabolic syndrome of Chinese diabetes society. Chin J Diab 12: 156-161.
[6]
Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH et al. (2005) Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 112: 2735-2752. doi:10.1161/CIRCULATIONAHA.105.169404. PubMed: 16157765.
[7]
Reaven GM (1993) Role of insulin resistance in human disease (syndrome X): an expanded definition. Annu Rev Med 44: 121-131. doi:10.1146/annurev.me.44.020193.001005. PubMed: 8476236.
[8]
Grundy SM, Brewer HB Jr., Cleeman JI, Smith SC Jr., Lenfant C (2004) Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation 109: 433-438. doi:10.1161/01.CIR.0000111245.75752.C6. PubMed: 14744958.
[9]
Deedwania PC (2004) Metabolic syndrome and vascular disease: is nature or nurture leading the new epidemic of cardiovascular disease? Circulation 109: 2-4. doi:10.1161/01.CIR.0000122867.89751.59. PubMed: 14707015.
[10]
Steinberger J, Daniels SR, Eckel RH, Hayman L, Lustig RH et al. (2009) Progress and challenges in metabolic syndrome in children and adolescents: a scientific statement from the American Heart Association Atherosclerosis, Hypertension, and Obesity in the Young Committee of the Council on Cardiovascular Disease in the Young; Council on Cardiovascular Nursing; and Council on Nutrition, Physical Activity, and Metabolism. Circulation 119: 628-647. doi:10.1161/CIRCULATIONAHA.108.191394. PubMed: 19139390.
[11]
Hong TK, Trang NH, Dibley MJ (2012) Prevalence of metabolic syndrome and factor analysis of cardiovascular risk clustering among adolescents in Ho Chi Minh City. Vietnam - Prev Med 55: 409-411.
[12]
Tsai CH, Li TC, Lin CC, Tsay HS (2011) Factor analysis of modifiable cardiovascular risk factors and prevalence of metabolic syndrome in adult Taiwanese. Endocrine 40: 256-264. doi:10.1007/s12020-011-9466-1. PubMed: 21499818.
[13]
Povel CM, Beulens JW, van der Schouw YT, Dollé ME, Spijkerman AM et al. (2013) Metabolic syndrome model definitions predicting type 2 diabetes and cardiovascular disease. Diabetes Care 36: 362-368. doi:10.2337/dc11-2546. PubMed: 22933442.
[14]
Stevenson JE, Wright BR, Boydstun AS (2012) The metabolic syndrome and coronary artery disease: a structural equation modeling approach suggestive of a common underlying pathophysiology. Metabolism 61: 1582-1588. doi:10.1016/j.metabol.2012.04.010. PubMed: 22626764.
Py?r?l? M, Miettinen H, Halonen P, Laakso M, Py?r?l? K (2000) Insulin resistance syndrome predicts the risk of coronary heart disease and stroke in healthy middle-aged men: the 22-year follow-up results of the Helsinki Policemen Study. Arterioscler Thromb Vasc Biol 20: 538-544. doi:10.1161/01.ATV.20.2.538. PubMed: 10669654.
[17]
Lehto S, R?nnemaa T, Py?r?l? K, Laakso M (2000) Cardiovascular risk factors clustering with endogenous hyperinsulinaemia predict death from coronary heart disease in patients with Type II diabetes. Diabetologia 43: 148-155. doi:10.1007/s001250050023. PubMed: 10753035.
[18]
Treeprasertsuk S, Leverage S, Adams LA, Lindor KD, St Sauver J et al. (2012) The Framingham risk score and heart disease in nonalcoholic fatty liver disease. Liver Int 32: 945-950. doi:10.1111/j.1478-3231.2011.02753.x. PubMed: 22299674.
[19]
Lemieux I, Lamarche B, Couillard C, Pascot A, Cantin B et al. (2001) Total cholesterol/HDL cholesterol ratio vs LDL cholesterol/HDL cholesterol ratio as indices of ischemic heart disease risk in men: the Quebec Cardiovascular Study. Arch Intern Med 161: 2685-2692. doi:10.1001/archinte.161.22.2685. PubMed: 11732933.
[20]
Cui R, Iso H, Yamagishi K, Saito I, Kokubo Y et al. (2012) High serum total cholesterol levels is a risk factor of ischemic stroke for general Japanese population: the JPHC study. Atherosclerosis 221: 565-569. doi:10.1016/j.atherosclerosis.2012.01.013. PubMed: 22341595.
[21]
Suzuki K, Izumi M, Sakamoto T, Hayashi M (2011) Blood pressure and total cholesterol level are critical risks especially for hemorrhagic stroke in Akita, Japan. Cerebrovasc Dis 31: 100-106. doi:10.1159/000321506. PubMed: 21079399.
[22]
Cui R, Iso H, Toyoshima H, Date C, Yamamoto A et al. (2007) Serum total cholesterol levels and risk of mortality from stroke and coronary heart disease in Japanese: the JACC study. Atherosclerosis 194: 415-420. doi:10.1016/j.atherosclerosis.2006.08.022. PubMed: 16970954.
[23]
Kwon CH, Kim BJ, Kim BS, Kang JH (2011) Low-density lipoprotein cholesterol to apolipoprotein B ratio is independently associated with metabolic syndrome in Korean men. Metabolism 60: 1136-1141. doi:10.1016/j.metabol.2010.12.007. PubMed: 21306749.
[24]
Nebeck K, Gelaye B, Lemma S, Berhane Y, Bekele T et al. (2012) Hematological parameters and metabolic syndrome: findings from an occupational cohort in Ethiopia. Diabetes Metab Syndr 6: 22-27. doi:10.1016/j.dsx.2012.05.009. PubMed: 23014250.
[25]
Nguyen QM, Srinivasan SR, Xu JH, Chen W, Hassig S et al. (2011) Elevated liver function enzymes are related to the development of prediabetes and type 2 diabetes in younger adults: the Bogalusa Heart Study. Diabetes Care 34: 2603-2607. doi:10.2337/dc11-0919. PubMed: 21953798.
[26]
Xu Y, Bi YF, Xu M, Huang Y, Lu WY et al. (2011) Cross-sectional and longitudinal association of serum alanine aminotransaminase and gamma-glutamyltransferase with metabolic syndrome in middle-aged and elderly Chinese people. J Diabetes 3: 38-47. doi:10.1111/j.1753-0407.2010.00111.x. PubMed: 21199427.
[27]
Onat A, Can G, Ornek E, Cicek G, Ayhan E et al. (2012) Serum gamma-glutamyltransferase: independent predictor of risk of diabetes, hypertension, metabolic syndrome, and coronary disease. Obesity (Silver Spring) 20: 842-848. doi:10.1038/oby.2011.136.
[28]
Cheung BM, Ong KL, Tso AW, Cherny SS, Sham PC et al. (2011) Gamma-glutamyl transferase level predicts the development of hypertension in Hong Kong Chinese. Clin Chim Acta 412: 1326-1331. doi:10.1016/j.cca.2011.03.030. PubMed: 21466796.
[29]
Jimba S, Nakagami T, Oya J, Wasada T, Endo Y et al. (2009) Increase in gamma-glutamyltransferase level and development of established cardiovascular risk factors and diabetes in Japanese adults. Metab Syndr Relat Disord 7: 411-418. doi:10.1089/met.2008.0082. PubMed: 19419267.
[30]
Zhang Q, Zhang C, Song X, Lin H, Zhang D et al. (2012) A longitudinal cohort based association study between uric acid level and metabolic syndrome in Chinese Han urban male population. BMC Public Health 12: 419. doi:10.1186/1471-2458-12-419. PubMed: 22682157.
[31]
Sui X, Church TS, Meriwether RA, Lobelo F, Blair SN (2008) Uric acid and the development of metabolic syndrome in women and men. Metabolism 57: 845-852. doi:10.1016/j.metabol.2008.01.030. PubMed: 18502269.
[32]
Lin YC, Chen JD, Lo SH, Chen PC (2010) Worksite health screening programs for predicting the development of Metabolic Syndrome in middle-aged employees: a five-year follow-up study. BMC Public Health 10: 747. PubMed: 21126351.
[33]
Liese AD, Hense HW, L?wel H, D?ring A, Tietze M et al. (1999) Association of serum uric acid with all-cause and cardiovascular disease mortality and incident myocardial infarction in the MONICA Augsburg cohort. World Health Organization Monitoring Trends and Determinants in Cardiovascular Diseases. Epidemiology 10: 391-397. doi:10.1097/00001648-199907000-00009. PubMed: 10401873.
[34]
Lehto S, Niskanen L, R?nnemaa T, Laakso M (1998) Serum uric acid is a strong predictor of stroke in patients with non-insulin-dependent diabetes mellitus. Stroke 29: 635-639. doi:10.1161/01.STR.29.3.635. PubMed: 9506605.
[35]
Meng W, Zhang C, Zhang Q, Song X, Lin H et al. (2012) Association between Leukocyte and Metabolic Syndrome in Urban Han Chinese: A Longitudinal Cohort Study. PLOS ONE 7: e49875. doi:10.1371/journal.pone.0049875. PubMed: 23209610.
[36]
Chen W, Srinivasan SR, Xu J, Berenson GS (2010) Black-white divergence in the relation of white blood cell count to metabolic syndrome in preadolescents, adolescents, and young adults: the Bogalusa Heart Study. Diabetes Care 33: 2474-2476. doi:10.2337/dc10-0619. PubMed: 20798336.
[37]
Lao XQ, Neil Thomas G, Jiang C, Zhang W, Adab P et al. (2008) White blood cell count and the metabolic syndrome in older Chinese: the Guangzhou Biobank Cohort Study. Atherosclerosis 201: 418-424. doi:10.1016/j.atherosclerosis.2007.12.053. PubMed: 18295770.
[38]
Odagiri K, Uehara A, Mizuta I, Yamamoto M, Kurata C (2011) Longitudinal study on white blood cell count and the incidence of metabolic syndrome. Intern Med 50: 2491-2498. doi:10.2169/internalmedicine.50.5877. PubMed: 22041347.
[39]
Lee CD, Folsom AR, Nieto FJ, Chambless LE, Shahar E et al. (2001) White blood cell count and incidence of coronary heart disease and ischemic stroke and mortality from cardiovascular disease in African-American and White men and women: atherosclerosis risk in communities study. Am J Epidemiol 154: 758-764. doi:10.1093/aje/154.8.758. PubMed: 11590089.
[40]
Onat A, Can G, Ademo?lu E, ?elik E, Karag?z A et al. (2013) Coronary disease risk curve of serum creatinine is linear in Turkish men, u-shaped in women. J Investig Med 61: 27-33. PubMed: 23160183.
[41]
Rose GA, Blackburn H (1968) Cardiovascular survey methods. Monogr Ser World Health Organ 56: 1-188. PubMed: 4972212.
[42]
Edwards KL, Austin MA, Newman B, Mayer E, Krauss RM et al. (1994) Multivariate analysis of the insulin resistance syndrome in women. Arterioscler Thromb 14: 1940-1945. doi:10.1161/01.ATV.14.12.1940. PubMed: 7981183.
[43]
Goodman E, Dolan LM, Morrison JA, Daniels SR (2005) Factor analysis of clustered cardiovascular risks in adolescence: obesity is the predominant correlate of risk among youth. Circulation 111: 1970-1977. doi:10.1161/01.CIR.0000161957.34198.2B. PubMed: 15837951.
[44]
Normann J, Mueller M, Biener M, Vafaie M, Katus HA, et al. (2012) Effect of older age on diagnostic and prognostic performance of high-sensitivity troponin T in patients presenting to an emergency department. Am Heart J 164: 698-705 e694.
[45]
Hamaguchi M, Takeda N, Kojima T, Ohbora A, Kato T et al. (2012) Identification of individuals with non-alcoholic fatty liver disease by the diagnostic criteria for the metabolic syndrome. World J Gastroenterol 18: 1508-1516. doi:10.3748/wjg.v18.i13.1508. PubMed: 22509083.
Borges RL, Ribeiro AB, Zanella MT, Batista MC (2010) Uric Acid as a Factor in the Metabolic Syndrome. Curr Hypertens Rep 12: 113-119. doi:10.1007/s11906-010-0098-2. PubMed: 20424936.
[48]
Gaziano TA, Young CR, Fitzmaurice G, Atwood S, Gaziano JM (2008) Laboratory-based versus non-laboratory-based method for assessment of cardiovascular disease risk: the NHANES I Follow-up Study cohort. Lancet 371: 923-931. doi:10.1016/S0140-6736(08)60418-3. PubMed: 18342687.
[49]
Wilson PW, D'Agostino RB, Levy D, Belanger AM, Silbershatz H et al. (1998) Prediction of coronary heart disease using risk factor categories. Circulation 97: 1837-1847. doi:10.1161/01.CIR.97.18.1837. PubMed: 9603539.
[50]
Assmann G, Cullen P, Schulte H (2002) Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the prospective cardiovascular Munster (PROCAM) study. Circulation 105: 310-315. doi:10.1161/hc0302.102575. PubMed: 11804985.
[51]
Conroy RM, Py?r?l? K, Fitzgerald AP, Sans S, Menotti A et al. (2003) Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J 24: 987-1003. doi:10.1016/S0195-668X(03)00114-3. PubMed: 12788299.
[52]
Ferrario M, Chiodini P, Chambless LE, Cesana G, Vanuzzo D et al. (2005) Prediction of coronary events in a low incidence population. Assessing accuracy of the CUORE Cohort Study prediction equation. Int J Epidemiol 34: 413-421. doi:10.1093/ije/dyh405. PubMed: 15659467.
[53]
Liu J, Hong Y, D'Agostino RB Sr., Wu Z, Wang W et al. (2004) Predictive value for the Chinese population of the Framingham CHD risk assessment tool compared with the Chinese Multi-Provincial Cohort Study. JAMA 291: 2591-2599. doi:10.1001/jama.291.21.2591. PubMed: 15173150.
[54]
Wu Y, Liu X, Li X, Li Y, Zhao L et al. (2006) Estimation of 10-year risk of fatal and nonfatal ischemic cardiovascular diseases in Chinese adults. Circulation 114: 2217-2225. doi:10.1161/CIRCULATIONAHA.105.607499. PubMed: 17088464.
[55]
Elkind MS, Ramakrishnan P, Moon YP, Boden-Albala B, Liu KM et al. (2010) Infectious burden and risk of stroke: the northern Manhattan study. Arch Neurol 67: 33-38. doi:10.1001/archneurol.2009.271. PubMed: 19901154.