全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Resting State fMRI Reveals Diminished Functional Connectivity in a Mouse Model of Amyloidosis

DOI: 10.1371/journal.pone.0084241

Full-Text   Cite this paper   Add to My Lib

Abstract:

Introduction Functional connectivity (FC) studies have gained immense popularity in the evaluation of several neurological disorders, such as Alzheimer’s disease (AD). AD is a complex disorder, characterised by several pathological features. The problem with FC studies in patients is that it is not straightforward to focus on a specific aspect of pathology. In the current study, resting state functional magnetic resonance imaging (rsfMRI) is applied in a mouse model of amyloidosis to assess the effects of amyloid pathology on FC in the mouse brain. Methods Nine APP/PS1 transgenic and nine wild-type mice (average age 18.9 months) were imaged on a 7T MRI system. The mice were anesthetized with medetomidine and rsfMRI data were acquired using a gradient echo EPI sequence. The data were analysed using a whole brain seed correlation analysis and interhemispheric FC was evaluated using a pairwise seed analysis. Qualitative histological analyses were performed to assess amyloid pathology, inflammation and synaptic deficits. Results The whole brain seed analysis revealed an overall decrease in FC in the brains of transgenic mice compared to wild-type mice. The results showed that interhemispheric FC was relatively preserved in the motor cortex of the transgenic mice, but decreased in the somatosensory cortex and the hippocampus when compared to the wild-type mice. The pairwise seed analysis confirmed these results. Histological analyses confirmed the presence of amyloid pathology, inflammation and synaptic deficits in the transgenic mice. Conclusions In the current study, rsfMRI demonstrated decreased FC in APP/PS1 transgenic mice compared to wild-type mice in several brain regions. The APP/PS1 transgenic mice had advanced amyloid pathology across the brain, as well as inflammation and synaptic deficits surrounding the amyloid plaques. Future studies should longitudinally evaluate APP/PS1 transgenic mice and correlate the rsfMRI findings to specific stages of amyloid pathology.

References

[1]  Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 1: a006189. PubMed: 22229116.
[2]  Johnson KA, Fox NC, Sperling RA, Klunk WE (2012) Brain imaging in Alzheimer disease. Cold Spring Harb Perspect Med 2: a006213. PubMed: 22474610.
[3]  Clark VH, Resnick SM, Doshi J, Beason-Held LL, Zhou Y et al. (2012) Longitudinal imaging pattern analysis (SPARE-CD index) detects early structural and functional changes before cognitive decline in healthy older adults. Neurobiol Aging 33: 2733-2745. doi:10.1016/j.neurobiolaging.2012.01.010. PubMed: 22365049.
[4]  van den Heuvel MP, Hulshoff Pol HE (2010) Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 20: 519-534. doi:10.1016/S0924-977X(10)70776-8. PubMed: 20471808.
[5]  Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34: 537-541. doi:10.1002/mrm.1910340409. PubMed: 8524021.
[6]  Wurina , Zang YF, Zhao SG (2012) Resting-state fMRI studies in epilepsy. Neurosci Bull 28: 449-455. doi:10.1007/s12264-012-1255-1. PubMed: 22833042.
[7]  Filippi M, Rocca MA (2012) New magnetic resonance imaging biomarkers for the diagnosis of multiple sclerosis. Expert Opin Med Diagn 6: 109-120. doi:10.1517/17530059.2012.657624. PubMed: 23480654.
[8]  Sheline YI, Raichle ME (2013) Resting State Functional Connectivity in Preclinical. Journal of Alzheimer'S Disease - Biol Psychiatry .
[9]  Hutchison RM, Leung LS, Mirsattari SM, Gati JS, Menon RS et al. (2011) Resting-state networks in the macaque at 7 T. NeuroImage 56: 1546-1555. doi:10.1016/j.neuroimage.2011.02.063. PubMed: 21356313.
[10]  Hutchison RM, Mirsattari SM, Jones CK, Gati JS, Leung LS (2010) Functional networks in the anesthetized rat brain revealed by independent component analysis of resting-state FMRI. J Neurophysiol 103: 3398-3406. doi:10.1152/jn.00141.2010. PubMed: 20410359.
[11]  Jonckers E, Van AJ, De VG, Van der Linden A, Verhoye M (2011) Functional connectivity fMRI of the rodent brain: comparison of functional connectivity networks in rat and mouse. PLOS ONE 6: e18876. doi:10.1371/journal.pone.0018876. PubMed: 21533116.
[12]  Pawela CP, Biswal BB, Cho YR, Kao DS, Li R et al. (2008) Resting-state functional connectivity of the rat brain. Magn Reson Med 59: 1021-1029. doi:10.1002/mrm.21524. PubMed: 18429028.
[13]  Bero AW, Bauer AQ, Stewart FR, White BR, Cirrito JR et al. (2012) Bidirectional relationship between functional connectivity and amyloid-beta deposition in mouse brain. J Neurosci 32: 4334-4340. doi:10.1523/JNEUROSCI.5845-11.2012. PubMed: 22457485.
[14]  White BR, Bauer AQ, Snyder AZ, Schlaggar BL, Lee JM et al. (2011) Imaging of functional connectivity in the mouse brain. PLOS ONE 6: e16322. doi:10.1371/journal.pone.0016322. PubMed: 21283729.
[15]  Little DM, Foxely S, Lazarov O (2012) A preliminary study targeting neuronal pathways activated following environmental enrichment by resting state functional magnetic resonance imaging. J Alzheimers Dis 32: 101-107. PubMed: 22766734.
[16]  Reitz C (2012) Alzheimer's disease and the amyloid cascade hypothesis: a critical review. Int J Alzheimers Dis 2012: 369808.
[17]  Spires-Jones T, Knafo S (2012) Spines, plasticity, and cognition in Alzheimer's model mice. Neural Plast 2012: 319836.
[18]  Hedden T, Van Dijk KR, Becker JA, Mehta A, Sperling RA et al. (2009) Disruption of functional connectivity in clinically normal older adults harboring amyloid burden. J Neurosci 29: 12686-12694. doi:10.1523/JNEUROSCI.3189-09.2009. PubMed: 19812343.
[19]  Radde R, Bolmont T, Kaeser SA, Coomaraswamy J, Lindau D et al. (2006) Abeta42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep 7: 940-946. doi:10.1038/sj.embor.7400784. PubMed: 16906128.
[20]  Vanhoutte G, Pereson S, Delgado YP, Guns PJ, Asselbergh B et al. (2013) Diffusion kurtosis imaging to detect amyloidosis in an APP/PS1 mouse model for Alzheimer's disease. Magn Reson Med 69: 1115-1121. doi:10.1002/mrm.24680. PubMed: 23494926.
[21]  Radde R, Bolmont T, Kaeser SA, Coomaraswamy J, Lindau D et al. (2006) Abeta42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep 7: 940-946. doi:10.1038/sj.embor.7400784. PubMed: 16906128.
[22]  Praet J, Reekmans K, Lin D, De VN, Bergwerf I et al. (2012) Cell type-associated differences in migration, survival, and immunogenicity following grafting in CNS tissue. Cell Transplant 21: 1867-1881. doi:10.3727/096368912X636920. PubMed: 22472278.
[23]  Joel SE, Caffo BS, van Zijl PC, Pekar JJ (2011) On the relationship between seed-based and ICA-based measures of functional connectivity. Magn Reson Med 66: 644-657. doi:10.1002/mrm.22818. PubMed: 21394769.
[24]  Sforazzini F, Schwarz AJ, Galbusera A, Bifone A, Gozzi A (2013) Distributed BOLD and CBV-weighted resting-state networks in the mouse brain. NeuroImage: ([MedlinePgn:]) PubMed: 24080504 .
[25]  Bolmont T, Haiss F, Eicke D, Radde R, Mathis CA et al. (2008) Dynamics of the microglial/amyloid interaction indicate a role in plaque maintenance. J Neurosci 28: 4283-4292. doi:10.1523/JNEUROSCI.4814-07.2008. PubMed: 18417708.
[26]  Bittner T, Burgold S, Dorostkar MM, Fuhrmann M, Wegenast-Braun BM et al. (2012) Amyloid plaque formation precedes dendritic spine loss. Acta Neuropathol 124: 797-807. doi:10.1007/s00401-012-1047-8. PubMed: 22993126.
[27]  Rupp NJ, Wegenast-Braun BM, Radde R, Calhoun ME, Jucker M (2011) Early onset amyloid lesions lead to severe neuritic abnormalities and local, but not global neuron loss in APPPS1 transgenic mice. Neurobiol Aging 32: 2324-2326. PubMed: 20970889.
[28]  Priller C, Mitteregger G, Paluch S, Vassallo N, Staufenbiel M et al. (2009) Excitatory synaptic transmission is depressed in cultured hippocampal neurons of APP/PS1 mice. Neurobiol Aging 30: 1227-1237. doi:10.1016/j.neurobiolaging.2007.10.016. PubMed: 18077058.
[29]  Gengler S, Hamilton A, H?lscher C (2010) Synaptic plasticity in the hippocampus of a APP/PS1 mouse model of Alzheimer's disease is impaired in old but not young mice. PLOS ONE 5: e9764. doi:10.1371/journal.pone.0009764. PubMed: 20339537.
[30]  Brier MR, Thomas JB, Snyder AZ, Benzinger TL, Zhang D et al. (2012) Loss of intranetwork and internetwork resting state functional connections with Alzheimer's disease progression. J Neurosci 32: 8890-8899. doi:10.1523/JNEUROSCI.5698-11.2012. PubMed: 22745490.
[31]  Sorg C, Riedl V, Mühlau M, Calhoun VD, Eichele T et al. (2007) Selective changes of resting-state networks in individuals at risk for Alzheimer's disease. Proc Natl Acad Sci U S A 104: 18760-18765. doi:10.1073/pnas.0708803104. PubMed: 18003904.
[32]  Buckner RL, Snyder AZ, Shannon BJ, LaRossa G, Sachs R et al. (2005) Molecular, structural, and functional characterization of Alzheimer's disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci 25: 7709-7717. doi:10.1523/JNEUROSCI.2177-05.2005. PubMed: 16120771.
[33]  Zhou Y, Dougherty JH Jr., Hubner KF, Bai B, Cannon RL et al. (2008) Abnormal connectivity in the posterior cingulate and hippocampus in early Alzheimer's disease and mild cognitive impairment. Alzheimers Dement 4: 265-270. doi:10.1016/j.jalz.2008.05.780. PubMed: 18631977.
[34]  Zhang HY, Wang SJ, Liu B, Ma ZL, Yang M et al. (2010) Resting brain connectivity: changes during the progress of Alzheimer disease. Radiology 256: 598-606. doi:10.1148/radiol.10091701. PubMed: 20656843.
[35]  Sperling RA, Laviolette PS, O'Keefe K, O'Brien J, Rentz DM et al. (2009) Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron 63: 178-188. doi:10.1016/j.neuron.2009.07.003. PubMed: 19640477.
[36]  Adriaanse SM, Sanz-Arigita EJ, Binnewijzend MA, Ossenkoppele R, Tolboom N et al. (2012) Amyloid and its association with default network integrity in Alzheimer's disease. Hum Brain Mapp: ([MedlinePgn:]) PubMed: 23238869.
[37]  Jankowsky JL, Fadale DJ, Anderson J, Xu GM, Gonzales V et al. (2004) Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Hum Mol Genet 13: 159-170. PubMed: 14645205.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133