CD4+ T cells display a variety of helper functions necessary for an efficient adaptive immune response against bacterial invaders. This work reports the in vivo identification and characterization of murine cytotoxic CD4+ T cells (CD4+ CTL) during Brucella abortus infection. These CD4+ CTLs express granzyme B and exhibit immunophenotypic features consistent with fully differentiated T cells. They express CD25, CD44, CD62L ,CD43 molecules at their surface and produce IFN-γ. Moreover, these cells express neither the co-stimulatory molecule CD27 nor the memory T cell marker CD127. We show here that CD4+ CTLs are capable of cytolytic action against Brucella-infected antigen presenting cells (APC) but not against Mycobacterium-infected APC. Cytotoxic CD4+ T cell population appears at early stages of the infection concomitantly with high levels of IFN-γ and granzyme B expression. CD4+ CTLs represent a so far uncharacterized immune cell sub-type triggered by early immune responses upon Brucella abortus infection.
References
[1]
Martirosyan A, Moreno E, Gorvel JP (2011) An evolutionary strategy for a stealthy intracellular Brucella pathogen. Immunol Rev 240: 211-234. doi:10.1111/j.1600-065X.2010.00982.x. PubMed: 21349096.
[2]
Atluri VL, Xavier MN, de Jong MF, den Hartigh AB, Tsolis RM (2011) Interactions of the human pathogenic Brucella species with their hosts. Annu Rev Microbiol 65: 523-541. doi:10.1146/annurev-micro-090110-102905. PubMed: 21939378.
[3]
Durward M, Radhakrishnan G, Harms J, Bareiss C, Magnani D et al. (2012) Active evasion of CTL mediated killing and low quality responding CD8+ T cells contribute to persistence of brucellosis. PLOS ONE 7: e34925. doi:10.1371/journal.pone.0034925. PubMed: 22558103.
[4]
Martirosyan A, Gorvel JP (2013) Brucella evasion of adaptive immunity. Future Microbiol 8: 147-154. doi:10.2217/fmb.12.140. PubMed: 23374122.
[5]
Grilló MJ, Blasco JM, Gorvel JP, Moriyón I, Moreno E (2012) What have we learned from brucellosis in the mouse model? Vet Res 43: 29. doi:10.1186/1297-9716-43-29. PubMed: 22500859.
[6]
Baldwin CL, Goenka R (2006) Host immune responses to the intracellular bacteria Brucella: does the bacteria instruct the host to facilitate chronic infection? Crit Rev Immunol 26: 407-442. doi:10.1615/CritRevImmunol.v26.i5.30. PubMed: 17341186.
[7]
Murphy EA, Sathiyaseelan J, Parent MA, Zou B, Baldwin CL (2001) Interferon-gamma is crucial for surviving a Brucella abortus infection in both resistant C57BL/6 and susceptible BALB/c mice. Immunology 103: 511-518. doi:10.1046/j.1365-2567.2001.01258.x. PubMed: 11529943.
[8]
Skyberg JA, Thornburg T, Rollins M, Huarte E, Jutila MA et al. (2011) Murine and bovine gammadelta T cells enhance innate immunity against Brucella abortus infections. PLOS ONE 6: e21978. doi:10.1371/journal.pone.0021978. PubMed: 21765931.
[9]
Vitry MA, De Trez C, Goriely S, Dumoutier L, Akira S et al. (2012) Crucial role of gamma interferon-producing CD4+ Th1 cells but dispensable function of CD8+ T cell, B cell, Th2, and Th17 responses in the control of Brucella melitensis infection in mice. Infect Immun 80: 4271-4280. doi:10.1128/IAI.00761-12. PubMed: 23006848.
[10]
Goenka R, Parent MA, Elzer PH, Baldwin CL (2011) B cell-deficient mice display markedly enhanced resistance to the intracellular bacterium Brucella abortus. J Infect Dis 203: 1136-1146. doi:10.1093/infdis/jiq171. PubMed: 21451002.
[11]
Cannella AP, Tsolis RM, Liang L, Felgner PL, Saito M et al. (2012) Antigen-specific acquired immunity in human brucellosis: implications for diagnosis, prognosis, and vaccine development. Front Cell Infect Microbiol 2: 1. PubMed: 22919593.
[12]
Bessoles S, Ni M, Garcia-Jimenez S, Sanchez F, Lafont V (2011) Role of NKG2D and its ligands in the anti-infectious activity of Vgamma9Vdelta2 T cells against intracellular bacteria. Eur J Immunol 41: 1619-1628. doi:10.1002/eji.201041230. PubMed: 21469127.
[13]
Allen JE, Maizels RM (1997) Th1-Th2: reliable paradigm or dangerous dogma? Immunol Today 18: 387-392. doi:10.1016/S0167-5699(97)01102-X. PubMed: 9267081.
[14]
Glimcher LH, Murphy KM (2000) Lineage commitment in the immune system: the T helper lymphocyte grows up. Genes Dev 14: 1693-1711. PubMed: 10898785.
[15]
Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL et al. (2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6: 1123-1132. doi:10.1038/ni1254. PubMed: 16200070.
[16]
Hori S, Takahashi T, Sakaguchi S (2003) Control of autoimmunity by naturally arising regulatory CD4+ T cells. Adv Immunol 81: 331-371. doi:10.1016/S0065-2776(03)81008-8. PubMed: 14711059.
Suni MA, Ghanekar SA, Houck DW, Maecker HT, Wormsley SB et al. (2001) CD4(+)CD8(dim) T lymphocytes exhibit enhanced cytokine expression, proliferation and cytotoxic activity in response to HCMV and HIV-1 antigens. Eur J Immunol 31: 2512-2520. doi:10.1002/1521-4141(200108)31:8. PubMed: 11500836.
[19]
Huang Z, Vafai A, Lee J, Mahalingam R, Hayward AR (1992) Specific lysis of targets expressing varicella-zoster virus gpI or gpIV by CD4+ human T-cell clones. J Virol 66: 2664-2669. PubMed: 1348545.
[20]
Mahon BP, Katrak K, Nomoto A, Macadam AJ, Minor PD et al. (1995) Poliovirus-specific CD4+ Th1 clones with both cytotoxic and helper activity mediate protective humoral immunity against a lethal poliovirus infection in transgenic mice expressing the human poliovirus receptor. J Exp Med 181: 1285-1292. doi:10.1084/jem.181.4.1285. PubMed: 7699320.
[21]
Fleischer B (1984) Acquisition of specific cytotoxic activity by human T4+ T lymphocytes in culture. Nature 308: 365-367. doi:10.1038/308365a0. PubMed: 6608693.
[22]
Appay V, Zaunders JJ, Papagno L, Sutton J, Jaramillo A et al. (2002) Characterization of CD4(+) CTLs ex vivo. J Immunol 168: 5954-5958. PubMed: 12023402.
[23]
Zaunders JJ, Dyer WB, Wang B, Munier ML, Miranda-Saksena M et al. (2004) Identification of circulating antigen-specific CD4+ T lymphocytes with a CCR5+, cytotoxic phenotype in an HIV-1 long-term nonprogressor and in CMV infection. Blood 103: 2238-2247. doi:10.1182/blood-2003-08-2765. PubMed: 14645006.
[24]
Fang M, Siciliano NA, Hersperger AR, Roscoe F, Hu A et al. (2012) Perforin-dependent CD4+ T-cell cytotoxicity contributes to control a murine poxvirus infection. Proc Natl Acad Sci U S A 109: 9983-9988. doi:10.1073/pnas.1202143109. PubMed: 22665800.
[25]
Brown DM, Lee S, Garcia-Hernandez L, Swain SL (2012) Multifunctional CD4 cells expressing gamma interferon and perforin mediate protection against lethal influenza virus infection. J Virol 86: 6792-6803. doi:10.1128/JVI.07172-11. PubMed: 22491469.
[26]
Omiya R, Buteau C, Kobayashi H, Paya CV, Celis E (2002) Inhibition of EBV-induced lymphoproliferation by CD4(+) T cells specific for an MHC class II promiscuous epitope. J Immunol 169: 2172-2179. PubMed: 12165547.
[27]
Porakishvili N, Kardava L, Jewell AP, Yong K, Glennie MJ et al. (2004) Cytotoxic CD4+ T cells in patients with B cell chronic lymphocytic leukemia kill via a perforin-mediated pathway. Haematologica 89: 435-443. PubMed: 15075077.
[28]
Namekawa T, Wagner UG, Goronzy JJ, Weyand CM (1998) Functional subsets of CD4 T cells in rheumatoid synovitis. Arthritis Rheum 41: 2108-2116. doi:10.1002/1529-0131(199812)41:12. PubMed: 9870867.
[29]
Yue FY, Kovacs CM, Dimayuga RC, Parks P, Ostrowski MA (2004) HIV-1-specific memory CD4+ T cells are phenotypically less mature than cytomegalovirus-specific memory CD4+ T cells. J Immunol 172: 2476-2486. PubMed: 14764720.
[30]
Jellison ER, Kim SK, Welsh RM (2005) Cutting edge: MHC class II-restricted killing in vivo during viral infection. J Immunol 174: 614-618. PubMed: 15634878.
[31]
Stuller KA, Fla?o E (2009) CD4 T cells mediate killing during persistent gammaherpesvirus 68 infection. J Virol 83: 4700-4703. doi:10.1128/JVI.02240-08. PubMed: 19244319.
[32]
Appay V (2004) The physiological role of cytotoxic CD4(+) T-cells: the holy grail? Clin Exp Immunol 138: 10-13. PubMed: 15373899.
[33]
Soghoian DZ, Streeck H (2010) Cytolytic CD4(+) T cells in viral immunity. Expert Rev Vaccines 9: 1453-1463. doi:10.1586/erv.10.132. PubMed: 21105780.
[34]
Martorelli D, Muraro E, Merlo A, Turrini R, Rosato A et al. (2010) Role of CD4+ cytotoxic T lymphocytes in the control of viral diseases and cancer. Int Rev Immunol 29: 371-402. doi:10.3109/08830185.2010.489658. PubMed: 20635880.
[35]
van de Berg PJ, van Leeuwen EM, ten Berge IJ, van Lier R (2008) Cytotoxic human CD4(+) T cells. Curr Opin Immunol 20: 339-343. doi:10.1016/j.coi.2008.03.007. PubMed: 18440213.
[36]
He Y, Vemulapalli R, Zeytun A, Schurig GG (2001) Induction of specific cytotoxic lymphocytes in mice vaccinated with Brucella abortus RB51. Infect Immun 69: 5502-5508. doi:10.1128/IAI.69.9.5502-5508.2001. PubMed: 11500423.