全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Structure of the Catalytic Domain of EZH2 Reveals Conformational Plasticity in Cofactor and Substrate Binding Sites and Explains Oncogenic Mutations

DOI: 10.1371/journal.pone.0083737

Full-Text   Cite this paper   Add to My Lib

Abstract:

Polycomb repressive complex 2 (PRC2) is an important regulator of cellular differentiation and cell type identity. Overexpression or activating mutations of EZH2, the catalytic component of the PRC2 complex, are linked to hyper-trimethylation of lysine 27 of histone H3 (H3K27me3) in many cancers. Potent EZH2 inhibitors that reduce levels of H3K27me3 kill mutant lymphoma cells and are efficacious in a mouse xenograft model of malignant rhabdoid tumors. Unlike most SET domain methyltransferases, EZH2 requires PRC2 components, SUZ12 and EED, for activity, but the mechanism by which catalysis is promoted in the PRC2 complex is unknown. We solved the 2.0 ? crystal structure of the EZH2 methyltransferase domain revealing that most of the canonical structural features of SET domain methyltransferase structures are conserved. The site of methyl transfer is in a catalytically competent state, and the structure clarifies the structural mechanism underlying oncogenic hyper-trimethylation of H3K27 in tumors harboring mutations at Y641 or A677. On the other hand, the I-SET and post-SET domains occupy atypical positions relative to the core SET domain resulting in incomplete formation of the cofactor binding site and occlusion of the substrate binding groove. A novel CXC domain N-terminal to the SET domain may contribute to the apparent inactive conformation. We propose that protein interactions within the PRC2 complex modulate the trajectory of the post-SET and I-SET domains of EZH2 in favor of a catalytically competent conformation.

References

[1]  Müller J, Hart CM, Francis NJ, Vargas ML, Sengupta A et al. (2002) Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111: 197-208. doi:10.1016/S0092-8674(02)00976-5. PubMed: 12408864.
[2]  Czermin B, Melfi R, McCabe D, Seitz V, Imhof A et al. (2002) Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 111: 185-196. doi:10.1016/S0092-8674(02)00975-3. PubMed: 12408863.
[3]  Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H et al. (2002) Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298: 1039-1043. doi:10.1126/science.1076997. PubMed: 12351676.
[4]  Kirmizis A, Bartley SM, Kuzmichev A, Margueron R, Reinberg D et al. (2004) Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27. Genes Dev 18: 1592-1605. doi:10.1101/gad.1200204. PubMed: 15231737.
[5]  Kuzmichev A, Jenuwein T, Tempst P, Reinberg D (2004) Different EZH2-containing complexes target methylation of histone H1 or nucleosomal histone H3. Mol Cell 14: 183-193. doi:10.1016/S1097-2765(04)00185-6. PubMed: 15099518.
[6]  Joshi P, Carrington EA, Wang L, Ketel CS, Miller EL et al. (2008) Dominant alleles identify SET domain residues required for histone methyltransferase of Polycomb repressive complex 2. J Biol Chem 283: 27757-27766. doi:10.1074/jbc.M804442200. PubMed: 18693240.
[7]  Dillon SC, Zhang X, Trievel RC, Cheng X (2005) The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol 6: 227. doi:10.1186/gb-2005-6-8-227. PubMed: 16086857.
[8]  Rea S, Eisenhaber F, O'Carroll D, Strahl BD, Sun ZW et al. (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406: 593-599. doi:10.1038/35020506. PubMed: 10949293.
[9]  Pasini D, Bracken AP, Jensen MR, Lazzerini Denchi E, Helin K (2004) Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J 23: 4061-4071. doi:10.1038/sj.emboj.7600402. PubMed: 15385962.
[10]  Cao R, Zhang Y (2004) SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol Cell 15: 57-67. doi:10.1016/j.molcel.2004.06.020. PubMed: 15225548.
[11]  Yamamoto K, Sonoda M, Inokuchi J, Shirasawa S, Sasazuki T (2004) Polycomb group suppressor of zeste 12 links heterochromatin protein 1alpha and enhancer of zeste 2. J Biol Chem 279: 401-406. PubMed: 14570930.
[12]  Margueron R, Reinberg D (2011) The Polycomb complex PRC2 and its mark in life. Nature 469: 343-349. doi:10.1038/nature09784. PubMed: 21248841.
[13]  Chase A, Cross NC (2011) Aberrations of EZH2 in cancer. Clin Cancer Res 17: 2613-2618. doi:10.1158/1078-0432.CCR-10-2156. PubMed: 21367748.
[14]  Simon JA, Lange CA (2008) Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat Res 647: 21-29. doi:10.1016/j.mrfmmm.2008.07.010. PubMed: 18723033.
[15]  Kleer CG, Cao Q, Varambally S, Shen R, Ota I et al. (2003) EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci U S A 100: 11606-11611. doi:10.1073/pnas.1933744100. PubMed: 14500907.
[16]  Takawa M, Masuda K, Kunizaki M, Daigo Y, Takagi K et al. (2011) Validation of the histone methyltransferase EZH2 as a therapeutic target for various types of human cancer and as a prognostic marker. Cancer Sci 102: 1298-1305. doi:10.1111/j.1349-7006.2011.01958.x. PubMed: 21539681.
[17]  Varambally S, Cao Q, Mani RS, Shankar S, Wang X et al. (2008) Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322: 1695-1699. doi:10.1126/science.1165395. PubMed: 19008416.
[18]  Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C et al. (2002) The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419: 624-629. doi:10.1038/nature01075. PubMed: 12374981.
[19]  Wagener N, Macher-Goeppinger S, Pritsch M, Hüsing J, Hoppe-Seyler K et al. (2010) Enhancer of zeste homolog 2 (EZH2) expression is an independent prognostic factor in renal cell carcinoma. BMC Cancer 10: 524. doi:10.1186/1471-2407-10-524. PubMed: 20920340.
[20]  Kunju LP, Cookingham C, Toy KA, Chen W, Sabel MS et al. (2011) EZH2 and ALDH-1 mark breast epithelium at risk for breast cancer development. Mod Pathol 24: 786-793. doi:10.1038/modpathol.2011.8. PubMed: 21399615.
[21]  McCabe MT, Graves AP, Ganji G, Diaz E, Halsey WS et al. (2012) Mutation of A677 in histone methyltransferase EZH2 in human B-cell lymphoma promotes hypertrimethylation of histone H3 on lysine 27 (H3K27). Proc Natl Acad Sci U S A 109: 2989-2994. doi:10.1073/pnas.1211753109. PubMed: 22323599.
[22]  Morin RD, Mendez-Lago M, Mungall AJ, Goya R, Mungall KL et al. (2011) Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 476: 298-303. doi:10.1038/nature10351. PubMed: 21796119.
[23]  Pasqualucci L, Trifonov V, Fabbri G, Ma J, Rossi D et al. (2011) Analysis of the coding genome of diffuse large B-cell lymphoma. Nat Genet 43: 830-837. doi:10.1038/ng.892. PubMed: 21804550.
[24]  Sneeringer CJ, Scott MP, Kuntz KW, Knutson SK, Pollock RM et al. (2010) Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. Proc Natl Acad Sci U S A 107: 20980-20985. doi:10.1073/pnas.1012525107. PubMed: 21078963.
[25]  Wigle TJ, Knutson SK, Jin L, Kuntz KW, Pollock RM et al. (2011) The Y641C mutation of EZH2 alters substrate specificity for histone H3 lysine 27 methylation states. FEBS Lett 585: 3011-3014. doi:10.1016/j.febslet.2011.08.018. PubMed: 21856302.
[26]  Yap DB, Chu J, Berg T, Schapira M, Cheng SW et al. (2011) Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation. Blood 117: 2451-2459. doi:10.1182/blood-2010-11-321208. PubMed: 21190999.
[27]  Copeland RA (2013) Molecular Pathways: Protein methyltransferases in cancer. Clin Cancer Res, 19: 6344–50. PubMed: 23958745.
[28]  Knutson SK, Warholic NM, Wigle TJ, Klaus CR, Allain CJ et al. (2013) Durable tumor regression in genetically altered malignant rhabdoid tumors by inhibition of methyltransferase EZH2. Proc Natl Acad Sci U S A 110: 7922-7927. doi:10.1073/pnas.1303800110. PubMed: 23620515.
[29]  Knutson SK, Wigle TJ, Warholic NM, Sneeringer CJ, Allain CJ et al. (2012) A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nat Chem Biol 8: 890-896. PubMed: 23023262.
[30]  Konze KD, Ma A, Li F, Barsyte-Lovejoy D, Parton T et al. (2013) An Orally Bioavailable Chemical Probe of the Lysine Methyltransferases EZH2 and EZH1. ACS Chem Biol PubMed: 23614352.
[31]  McCabe MT, Ott HM, Ganji G, Korenchuk S, Thompson C et al. (2012) EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 492: 108-112. doi:10.1038/nature11606. PubMed: 23051747.
[32]  Qi W, Chan H, Teng L, Li L, Chuai S et al. (2012) Selective inhibition of Ezh2 by a small molecule inhibitor blocks tumor cells proliferation. Proc Natl Acad Sci U S A 109: 21360-21365. doi:10.1073/pnas.1210371110. PubMed: 23236167.
[33]  Kim W, Bird GH, Neff T, Guo G, Kerenyi MA et al. (2013) Targeted disruption of the EZH2-EED complex inhibits EZH2-dependent cancer. Nat Chem Biol, 9: 643–50. PubMed: 23974116.
[34]  Minor W, Cymborowski M, Otwinowski Z, Chruszcz M (2006) HKL-3000: the integration of data reduction and structure solution--from diffraction images to an initial model in minutes. Acta Crystallogr D Biol Crystallogr 62: 859-866. doi:10.1107/S0907444906019949. PubMed: 16855301.
[35]  Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53: 240-255. doi:10.1107/S0907444996012255. PubMed: 15299926.
[36]  Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60: 2126-2132. doi:10.1107/S0907444904019158. PubMed: 15572765.
[37]  Davis IW, Murray LW, Richardson JS, Richardson DC (2004) MOLPROBITY: structure validation and all-atom contact analysis for nucleic acids and their complexes. Nucleic Acids Res 32: W615-W619. doi:10.1093/nar/gkh398. PubMed: 15215462.
[38]  Schapira M (2011) Structural Chemistry of Human SET Domain Protein Methyltransferases. Curr Chem Genomics 5: 85-94. doi:10.2174/1875397301005010085. PubMed: 21966348.
[39]  Swalm BM, Hallenbeck KK, Majer CR, Jin L, Scott MP et al. (2013) Convergent evolution of chromatin modification by structurally distinct enzymes: comparative enzymology of histone H3 Lys(2)(7) methylation by human polycomb repressive complex 2 and vSET. Biochem J 453: 241-247. doi:10.1042/BJ20130439. PubMed: 23679895.
[40]  Holm L, Rosenstr?m P (2010) Dali server: conservation mapping in 3D. Nucleic Acids Res 38: W545-W549. doi:10.1093/nar/gkp893. PubMed: 20457744.
[41]  Wang X, Dai H, Wang Q, Xu Y, Wang Y et al. (2013) EZH2 mutations are related to low blast percentage in bone marrow and -7/del(7q) in de novo acute myeloid leukemia. PLOS ONE 8: e61341. doi:10.1371/journal.pone.0061341. PubMed: 23613835.
[42]  Ernst T, Chase AJ, Score J, Hidalgo-Curtis CE, Bryant C et al. (2010) Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet 42: 722-726. doi:10.1038/ng.621. PubMed: 20601953.
[43]  Wu H, Min J, Lunin VV, Antoshenko T, Dombrovski L et al. (2010) Structural biology of human H3K9 methyltransferases. PLOS ONE 5: e8570. doi:10.1371/journal.pone.0008570. PubMed: 20084102.
[44]  Xiao B, Jing C, Wilson JR, Walker PA, Vasisht N et al. (2003) Structure and catalytic mechanism of the human histone methyltransferase SET7/9. Nature 421: 652-656. doi:10.1038/nature01378. PubMed: 12540855.
[45]  Couture JF, Dirk LM, Brunzelle JS, Houtz RL, Trievel RC (2008) Structural origins for the product specificity of SET domain protein methyltransferases. Proc Natl Acad Sci U S A 105: 20659-20664. doi:10.1073/pnas.0806712105. PubMed: 19088188.
[46]  Margueron R, Justin N, Ohno K, Sharpe ML, Son J et al. (2009) Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461: 762-767. doi:10.1038/nature08398. PubMed: 19767730.
[47]  Chang Y, Levy D, Horton JR, Peng J, Zhang X et al. (2011) Structural basis of SETD6-mediated regulation of the NF-kB network via methyl-lysine signaling. Nucleic Acids Res 39: 6380-6389. doi:10.1093/nar/gkr256. PubMed: 21515635.
[48]  Wang L, Li L, Zhang H, Luo X, Dai J et al. (2011) Structure of human SMYD2 protein reveals the basis of p53 tumor suppressor methylation. J Biol Chem 286: 38725-38737. doi:10.1074/jbc.M111.262410. PubMed: 21880715.
[49]  Couture JF, Collazo E, Brunzelle JS, Trievel RC (2005) Structural and functional analysis of SET8, a histone H4 Lys-20 methyltransferase. Genes Dev 19: 1455-1465. doi:10.1101/gad.1318405. PubMed: 15933070.
[50]  Xiao B, Jing C, Kelly G, Walker PA, Muskett FW et al. (2005) Specificity and mechanism of the histone methyltransferase PrPr-Set7. Genes Dev 19: 1444-1454. doi:10.1101/gad.1315905. PubMed: 15933069.
[51]  Southall SM, Wong PS, Odho Z, Roe SM, Wilson JR (2009) Structural basis for the requirement of additional factors for MLL1 SET domain activity and recognition of epigenetic marks. Mol Cell 33: 181-191. doi:10.1016/j.molcel.2008.12.029. PubMed: 19187761.
[52]  Chuikov S, Kurash JK, Wilson JR, Xiao B, Justin N et al. (2004) Regulation of p53 activity through lysine methylation. Nature 432: 353-360. doi:10.1038/nature03117. PubMed: 15525938.
[53]  Ciferri C, Lander GC, Maiolica A, Herzog F, Aebersold R et al. (2012) Molecular architecture of human polycomb repressive complex 2. Elife 1: e00005. doi:10.7554/eLife.00005. PubMed: 23110252.
[54]  Wu H, Mathioudakis N, Diagouraga B, Dong A, Dombrovski L et al. (2013) Molecular Basis for the Regulation of the H3K4 Methyltransferase Activity of PRDM9. Cell Rep 5: 13-20. doi:10.1016/j.celrep.2013.08.035. PubMed: 24095733.
[55]  Vedadi M, Niesen FH, Allali-Hassani A, Fedorov OY, Finerty PJ Jr. et al. (2006) Chemical screening methods to identify ligands that promote protein stability, protein crystallization, and structure determination. Proc Natl Acad Sci U S A 103: 15835-15840. doi:10.1073/pnas.0605224103. PubMed: 17035505.
[56]  Campagna-Slater V, Mok MW, Nguyen KT, Feher M, Najmanovich R et al. (2011) Structural chemistry of the histone methyltransferases cofactor binding site. J Chem Inf Model 51: 612-623. doi:10.1021/ci100479z. PubMed: 21366357.
[57]  Kwon T, Chang JH, Kwak E, Lee CW, Joachimiak A et al. (2003) Mechanism of histone lysine methyl transfer revealed by the structure of SET7/9-AdoMet. EMBO J 22: 292-303. doi:10.1093/emboj/cdg025. PubMed: 12514135.
[58]  Wilson JR, Jing C, Walker PA, Martin SR, Howell SA et al. (2002) Crystal structure and functional analysis of the histone methyltransferase SET7/9. Cell 111: 105-115. doi:10.1016/S0092-8674(02)00964-9. PubMed: 12372304.
[59]  Qiao Q, Li Y, Chen Z, Wang M, Reinberg D et al. (2011) The structure of NSD1 reveals an autoregulatory mechanism underlying histone H3K36 methylation. J Biol Chem 286: 8361-8368. doi:10.1074/jbc.M110.204115. PubMed: 21196496.
[60]  Zheng W, Ibá?ez G, Wu H, Blum G, Zeng H et al. (2012) Sinefungin derivatives as inhibitors and structure probes of protein lysine methyltransferase SETD2. J Am Chem Soc 134: 18004-18014. doi:10.1021/ja307060p. PubMed: 23043551.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133