全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Yet More “Weeds” in the Garden: Fungal Novelties from Nests of Leaf-Cutting Ants

DOI: 10.1371/journal.pone.0082265

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Symbiotic relationships modulate the evolution of living organisms in all levels of biological organization. A notable example of symbiosis is that of attine ants (Attini; Formicidae: Hymenoptera) and their fungal cultivars (Lepiotaceae and Pterulaceae; Agaricales: Basidiomycota). In recent years, this mutualism has emerged as a model system for studying coevolution, speciation, and multitrophic interactions. Ubiquitous in this ant-fungal symbiosis is the “weedy” fungus Escovopsis (Hypocreales: Ascomycota), known only as a mycoparasite of attine fungal gardens. Despite interest in its biology, ecology and molecular phylogeny—noting, especially, the high genetic diversity encountered—which has led to a steady flow of publications over the past decade, only two species of Escovopsis have formally been described. Methods and Results We sampled from fungal gardens and garden waste (middens) of nests of the leaf-cutting ant genus Acromyrmex in a remnant of subtropical Atlantic rainforest in Minas Gerais, Brazil. In culture, distinct morphotypes of Escovopsis sensu lato were recognized. Using both morphological and molecular analyses, three new species of Escovopsis were identified. These are described and illustrated herein—E. lentecrescens, E. microspora, and E. moelleri—together with a re-description of the genus and the type species, E. weberi. The new genus Escovopsioides is erected for a fourth morphotype. We identify, for the first time, a mechanism for horizontal transmission via middens. Conclusions The present study makes a start at assigning names and formal descriptions to these specific fungal parasites of attine nests. Based on the results of this exploratory and geographically-restricted survey, we expect there to be many more species of the genus Escovopsis and its relatives associated with nests of both the lower and higher Attini throughout their neotropical range, as suggested in previous studies.

References

[1]  Blackwell M (2011) The fungi: 1, 2, 3 … 5.1 million species? Am J Bot 98: 426–438.
[2]  Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B (2011) How many species are there on Earth and in the ocean? PLOS Biol 9: e1001127.
[3]  Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of the Fungi. 10 ed. Wallingford, UK: CABI Publishing.
[4]  Hawksworth DL (2001) The magnitude of fungal diversity: The 1.5 million species estimate revisited. Mycol Res 105: 1422–1432.
[5]  May RM (2011) Why worry about how many species and their loss? PLOS Biol 9: e1001130.
[6]  Evans HC, Elliot SL, Hughes DP (2011) Hidden diversity behind the zombie-ant fungus Ophiocordyceps unilateralis: Four new species described from carpenter ants in Minas Gerais, Brazil. PLOS ONE 6: e17024.
[7]  Evans HC, Elliot SE, Hughes DP (2011) Ophiocordyceps unilateralis: A keystone species for unraveling ecosystem functioning and biodiversity of fungi? Commun Integr Biol 4: 598–602.
[8]  Kobmoo N, Mongkolsamrit S, Tasanathai K, Thanakitpipattana D, Luangsa-Ard JJ (2012) Molecular phylogenies reveal host-specific divergence of Ophiocordyceps unilateralis sensu lato following its host ants. Mol Ecol 21: 3022–3031.
[9]  H?lldobler B, Wilson EO (1990) The Ants. Cambridge, MA: Harvard University Press.
[10]  Mueller UG (2002) Ant versus fungus versus mutualism: Ant-cultivar conflict and the deconstruction of the attine ant-fungus symbiosis. Am Nat 160: S67–S98.
[11]  Mikheyev AS, Mueller UG, Abbot P (2006) Cryptic sex and many-to-one coevolution in the fungus-growing ant symbiosis. Proc Natl Acad Sci USA 103: 10702–10706.
[12]  Mikheyev AS, Mueller UG, Abbot P (2010) Comparative dating of attine ant and lepiotaceous cultivar phylogenies reveals coevolutionary synchrony and discord. Am Nat 175: E126–E133.
[13]  Currie CR, Mueller UG, Malloch D (1999) The agricultural pathology of ant fungus gardens. Proc Natl Acad Sci USA 96: 7998–8002.
[14]  Pagnocca FC, Rodrigues A, Nagamoto NS, Bacci M Jr (2008) Yeasts and filamentous fungi carried by the gynes of leaf-cutting ants. Antonie Van Leeuwenhoek 94: 517–526.
[15]  Muchovej JJ, Della Lucia TMC (1990) Escovopsis, a new genus from leaf cutting ant nests to replace Phialocladus nomen invalidum. Mycotaxon 37: 191–195.
[16]  Kreisel H (1972) Pilze aus Pilzg?rten von Atta insularis in Kuba. Z Allg Mikrobiol 12: 643–654.
[17]  Seifert KA, Samson RA, Chapela IH (1995) Escovopsis aspergilloides, a rediscovered hyphomycete from leaf-cutting ant nests. Mycologia 87: 407–413.
[18]  Carmichael JW, Kendrick WB, Sigler S (1980) Genera of Hyphomycetes. Edmonton, Canada: University of Alberta Press.
[19]  Moeller A (1893) Die Pilzgaerten einiger suedamerikanischer Ameisen. In: Schimper AFW, editor. Botanische Mittheilungen aus den Tropen. Jena: Gustav Fischer.
[20]  Stahel G, Geijskes DC (1941) Weitere Untersuchungen über Nestbau und Gartenpilz von Atta cephalotes L. und Atta sexdens L. (Hym. Formicidae). Revista de Entomologia 12: 243–268.
[21]  Weber NA (1966) Fungus-growing ants. Science 153: 587–604.
[22]  Currie CR, Wong B, Stuart AE, Schultz TR, Rehner SA, et al. (2003) Ancient tripartite coevolution in the attine ant-microbe symbiosis. Science 299: 386–388.
[23]  Caldera EJ, Poulsen M, Suen G, Currie CR (2009) Insect symbioses: A case study of past, present, and future fungus-growing ant research. Environ Entomol 38: 78–92.
[24]  Currie CR (2001) Prevalence and impact of a virulent parasite on a tripartite mutualism. Oecologia 128: 99–106.
[25]  Gerardo NM, Caldera EJ (2007) Labile associations between fungus-growing ant cultivars and their garden pathogens. ISME J 1: 373–384.
[26]  Gerardo NM, Mueller UG, Currie CR (2006) Complex host-pathogen coevolution in the Apterostigma fungus-growing ant-microbe symbiosis. BMC Evol Biol 6: 88–97.
[27]  Gerardo NM, Jacobs SR, Currie CR, Mueller UG (2006) Ancient host-pathogen associations maintained by specificity of chemotaxis and antibiosis. PLOS Biol 4: 1358–1363.
[28]  Gerardo NM, Mueller UG, Price SL, Currie CR (2004) Exploiting a mutualism: Parasite specialization on cultivars within the fungus-growing ant symbiosis. Proc R Soc Lond B Biol Sci 271: 1791–1798.
[29]  Reynolds HT, Currie CR (2004) Pathogenicity of Escovopsis weberi: The parasite of the attine ant-microbe symbiosis directly consumes the ant-cultivated fungus. Mycologia 96: 955–959.
[30]  Rodrigues A, Bacci M Jr, Mueller UG, Ortiz A, Pagnocca FC (2008) Microfungal “weeds” in the leafcutter ant symbiosis. Microb Ecol 56: 604–614.
[31]  Schultz TR, Brady SG (2008) Major evolutionary transitions in ant agriculture. Proc Natl Acad Sci USA 105: 5435–5440.
[32]  Taerum SJ, Cafaro MJ, Currie CR (2010) Presence of multiparasite infections within individual colonies of leaf-cutter ants. Environ Entomol 39: 105–113.
[33]  Taerum SJ, Cafaro MJ, Little AEF, Schultz TR, Currie CR (2007) Low host-pathogen specificity in the leaf-cutting ant-microbe symbiosis. Proc R Soc Lond B Biol Sci 274: 1971–1978.
[34]  Boomsma JJ, Aanen DK (2009) Rethinking crop-disease management in fungus-growing ants. Proc Natl Acad Sci USA 106: 17611–17612.
[35]  Currie CR, Scott JA, Summerbell RC, Malloch D (1999) Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 398: 701–704.
[36]  Currie CR, Stuart AE (2001) Weeding and grooming of pathogens in agriculture by ants. Proc R Soc Lond B Biol Sci 268: 1033–1039.
[37]  Fernandez-Marin H, Zimmerman JK, Nash DR, Boomsma JJ, Wcislo WT (2009) Reduced biological control and enhanced chemical pest management in the evolution of fungus farming in ants. Proc R Soc Lond B Biol Sci 276: 2263–2269.
[38]  Little AEF, Currie CR (2008) Black yeast symbionts compromise the efficiency of antibiotic defenses in fungus-growing ants. Ecology 89: 1216–1222.
[39]  Samuels RI, Mattoso TC, Moreira DDO (2013) Chemical warfare: Leaf-cutting ants defend themselves and their gardens against parasite attack by deploying antibiotic secreting bacteria. Commun Integr Biol 6: e23095.
[40]  Seifert KA, Morgan-Jones G, Gams W, Kendrick B (2011) The Genera of Hyphomycetes. Utrecht, Netherlands: CBS-KNAW Fungal Biodiversity Centre.
[41]  Hawksworth DL (2011) A new dawn for the naming of fungi: Impacts of decisions made in Melbourne in July 2011 on the future publication and regulation of fungal names. IMA Fungus 2: 155–162.
[42]  Knapp S, McNeill J, Turland NJ (2011) Fungal nomenclature. Changes to publication requirements made at the XVIII International Botanical Congress in Melbourne - what does e-publication mean for you? Mycotaxon 117: 509–515.
[43]  Rodrigues A (2004) Ocorrência de fungos filamentosos em ninhos de Atta sexdens rubropilosa Forel, 1908 (Hymenoptera: Formicidae) submetidos a tratamentos com iscas tóxicas. Rio ClaroBrazil: Universidade Estadual Paulista. 84 p.
[44]  Rodrigues A, Pagnocca FC, Bueno OC, Pfenning LH, Bacci M (2005) Assessment of microfungi in fungus gardens free of the leaf-cutting ant Atta sexdens rubropilosa (Hymenoptera : Formicidae). Sociobiology 46: 329–334.
[45]  Augustin JO, Santos JFL, Elliot SL (2011) A behavioral repertoire of Atta sexdens (Hymenoptera, Formicidae) queens during the claustral founding and ergonomic stages. Insectes Soc 58: 197–206.
[46]  Fernandez-Marin H, Zimmerman JK, Wcislo WT (2007) Fungus garden platforms improve hygiene during nest establishment in Acromyrmex ants (Hymenoptera, Formicidae, Attini). Insectes Soc 54: 64–69.
[47]  Fernandez-Marin H, Zimmerman JK, Wcislo WT (2003) Nest-founding in Acromyrmex octospinosus (Hymenoptera, Formicidae, Attini): Demography and putative prophylactic behaviors. Insectes Soc 50: 304–308.
[48]  Augustin JO, Santos JFL (2007) The best founding strategy: Atta sexdens (Hymenoptera: Formicidae) queens perform more selfgrooming behaviors than broodcare or tending fungus garden behaviors. Biol 69: 385–387.
[49]  Weber NA (1957) Weeding as a factor in fungus culture by ants. Anat Rec 128: 638–638.
[50]  Augustin JO, Lopes Santos JF (2008) Behavior of early generations of Atta sexdens (Hymenoptera: Formicidae) workers during preparation of leaf substrate for symbiont fungus gardens. Sociobiology 51: 265–281.
[51]  Barke J, Seipke RF, Grueschow S, Heavens D, Drou N, et al. (2010) A mixed community of actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex octospinosus. BMC Biol 8.
[52]  Currie CR, Poulsen M, Mendenhall J, Boomsma JJ, Billen J (2006) Coevolved crypts and exocrine glands support mutualistic bacteria in fungus-growing ants. Science 311: 81–83.
[53]  Haeder S, Wirth R, Herz H, Spiteller D (2009) Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis. Proc Natl Acad Sci USA 106: 4742–4746.
[54]  Kost C, Lakatos T, Boettcher I, Arendholz W-R, Redenbach M, et al. (2007) Non-specific association between filamentous bacteria and fungus-growing ants. Naturwissenschaften 94: 821–828.
[55]  Sen R, Ishak HD, Estrada D, Dowd SE, Hong E, et al. (2009) Generalized antifungal activity and 454-screening of Pseudonocardia and Amycolatopsis bacteria in nests of fungus-growing ants. Proc Natl Acad Sci USA 106: 17805–17810.
[56]  Farji-Brener AG (2000) Leaf-cutting ant nests in temperate environments: Mounds, mound damages and nest mortality rate in Acromyrmex lobicornis. Stud Neotrop Fauna Environ 35: 131–138.
[57]  Bot ANM, Currie CR, Hart AG, Boomsma J (2001) Waste management in leaf-cutting ants. Ethol Ecol Evol 13: 225–237.
[58]  Hart AG (2002) Does disease threat cause colony emigrations in the leafcutting ant Atta colombica (Guerin)? Entomologist's Mon Mag 128: 41–42.
[59]  Waddington SJ, Hughes WOH (2010) Waste management in the leaf-cutting ant Acromyrmex echinatior: The role of worker size, age and plasticity. Behav Ecol Sociobiol 64: 1219–1228.
[60]  Brockhurst MA (2011) Sex, death, and the red queen. Science 333: 166–167.
[61]  Morran LT, Schmidt OG, Gelarden IA, Parrish RC II, Lively CM (2011) Running with the red queen: Host-parasite coevolution selects for biparental sex. Science 333: 216–218.
[62]  Sung G-H, Hywel-Jones NL, Sung J-M, Luangsa-ard JJ, Shrestha B, et al. (2007) Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud Mycol 5–59.
[63]  Spatafora JW, Sung GH, Sung JM, Hywel-Jones NL, White JF (2007) Phylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes. Mol Ecol 16: 1701–1711.
[64]  Samuels GJ (2006) Trichoderma: Systematics, the sexual state, and ecology. Phytopathology 96: 195–206.
[65]  Chaverri P, Gazis RO, Samuels GJ (2011) Trichoderma amazonicum, a new endophytic species on Hevea brasiliensis and H. guianensis from the Amazon basin. Mycologia 103: 139–151.
[66]  Johnston A, Booth C (1983) Plant Pathologist's Pocketbook. KewSurreyEngland: CABI. 439 p.
[67]  Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12: 13–15.
[68]  Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Mol Ecol 2: 113–118.
[69]  White TJ, Bruns TD, Lee SB, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis N, Gelfand D, Sninsky J, White T, editors. PCR - Protocols and Applications - A Laboratory Manual. New York: Academic Press, Inc. pp. 315–322.
[70]  Rehner SA, Samuels GJ (1994) Taxonomy and phylogeny of Gliocladium analyzed from nuclear large subunit ribosomal DNA sequences. Mycol Res 98: 625–634.
[71]  Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91: 553–556.
[72]  O'Donnell K, Kistler HC, Cigelnik E, Ploetz RC (1998) Multiple evolutionary origins of the fungus causing Panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies. Proc Natl Acad Sci USA 95: 2044–2049.
[73]  Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680.
[74]  Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739.
[75]  Swofford DL (2002) PAUP*. Phylogenetic Analysis Using Parsimony Version 4.0b10. (*and Other Methods). Sunderland, MA: Sinauer Associates.
[76]  Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.
[77]  Posada D, Crandall KA (1998) MODELTEST: Testing the model of DNA substitution. Bioinformatics 14: 817–818.
[78]  Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Uppsala University, Sweden: Evolutionary Biology Center.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133