[1] | Meyer CP, Paulay G (2005) DNA barcoding: error rates based on comprehensive sampling. PLoS Biol 3: e422, 2229–2238.
|
[2] | Huang JH, Fu P, Huang Y (2007) Redescription of Caryanda jiuyishana Fu & Zheng, 2000 (Orthoptera: Acrididae: Oxyinae: Oxyini) with proposal of a new synomym. Zootaxa 1436: 55–60.
|
[3] | Huang JH, Zheng ZM, Huang Y, Zhou SY (2009) New synonymies in Chinese Oxyinae (Orthoptera: Acrididae). Zootaxa 1976: 39–55.
|
[4] | Wei T, Huang JH (2012) To the synonymy of Traulia brachypeza Bi, 1986 (Orthoptera: Acrididae, Catantopinae). Far East Entomol 255: 11–15.
|
[5] | Eades DC, Otte D, Cigliano MM, Braun H (2013) Orthoptera species file online. Version 2.0/4.1. Available from http://orthoptera.speciesfile.org/HomePa?ge.aspx (accessed 3 October 2013).
|
[6] | Li HC, Xia KL (2006) Fauna Sinica, Insecta, volume 43, Orthoptera, Acridoidea, Catantopidae. Science Press, Beijing, China, 736 pp.
|
[7] | Zheng ZM, Xia KL (1998) Fauna Sinica. Insecta Volume 10. Orthoptera, Acridoidea, Oedipodidae and Arcypteridae. Science Press, Beijing, China, 616 pp.
|
[8] | Yin XC, Xia KL (2003) Fauna Sinica. Insecta Volume 32. Orthoptera, Acridoidea, Gomphoceridae and Acrididae. Science Press, Beijing, China, 280 pp.
|
[9] | Flook PK, Rowell CHF (1998) Inferences about orthopteroid phylogeny and molecular evolution from small subunit nuclear ribosomal RNA sequences. Insect Mol Biol 7: 163–178.
|
[10] | Flook PK, Klee S, Rowell CHF (1999) A combined molecular phylogenetic analysis of the Orthoptera and its implications for their higher systematics. Syst Biol 48: 233–253.
|
[11] | Lu HM, Ye WP, Huang Y (2001) Phylogenetic relationship among orthopteran superfamilies derived from 16S gene sequences. J Northwest Univers (Nat Sci Ed) 31 (special issue) 7–9.
|
[12] | Zhou ZJ, Ye HY, Huang Y, Shi F (2010) The phylogeny of Orthoptera inferred from mtDNA and description of Elimaea cheni (Tettigoniidae: Phaneropterinae) mitogenome. J Genet Genomics 37: 315–324.
|
[13] | Wang XY, Zhou ZJ, Huang Y, Shi FM (2011) The phylogenetic relationships of higher Orthopteran categories inferred from 18S rRNA gene sequences. Acta Zootax Sinica 36: 139–150.
|
[14] | Cui AM, Huang Y (2012) Phylogenetic relationships among Orthoptera insect groups based on complete sequences of 16S ribosomal RNA. Hereditas (Beijing) 4: 597–608.
|
[15] | Lv HJ, Huang Y (2012) Phylogenetic relationship among some groups of orthopteran based on complete sequences of the mitochondrial cox1 gene. Zool Res 33: 319–328.
|
[16] | Flook PK, Rowell CHF (1997) The phylogeny of the Caelifera (Insecta, Orthoptera) as deduced from mitochondrial rRNA gene sequences. Mol Phylogen Evol 8: 89–103.
|
[17] | Rowell CHF, Flook PK (1998) Phylogeny of the Caelifera and the Orthoptera as derived from ribosomal RNA gene sequences. J Orthoptera Res 7: 147–156.
|
[18] | Ren ZM, Ma EB, Guo YP (2002) The studies of the phylogeny of Acridoidea based on mtDNA cyt b sequences. Acta Genet Sinica 29: 314–321.
|
[19] | Yin H, Zhang DC, Bi ZL, Yin Z, Liu Y, et al. (2003) Molecular phylogeny of some species of the Acridoidea based on 16S rDNA. Acta Genet Sin 30: 766–772.
|
[20] | Yin H, Li XJ, Wang WQ, Yin XC (2004) Inferences about Acridoidea phylogenetic relationships from small subunit nuclear ribosomal DNA sequence. Acta Entomol Sinica 47: 809–814.
|
[21] | Liu DF, Jiang G (2005a) Molecular phylogenetic analysis of Acridoidea based on 18S rDNA with a discussion on its taxonomic system. Acta Entomol Sinica 48: 232–241.
|
[22] | Sun ZL, Jiang GF, Huo GM, Liu DF (2006) A phylogenetic analysis of six genera of Acrididae and monophyly of Acrididae in China using 16S rDNA sequences (Orthoptera, Acridoidea). Acta Zool Sinica 52: 302–308.
|
[23] | Wang NX, Feng X, Jiang GF, Fang N, Xuan WJ (2008) Molecular phylogenetic analysis of five subfamilies of the Acrididae (Orthoptera: Acridoidea) based on the mitochondrial cytochrome b and cytochrome c oxidase subunit I gene sequences. Acta Entomol Sinica 51: 1187–1195.
|
[24] | Zhang DC, Li XJ, Wang WQ, Yin H, Yin Z, et al. (2005) Molecular phylogeny of some genera of Pamphagidae (Acridoidea, Orthoptera) from China based on mitochondrial 16S rDNA sequences. Zootaxa 1103: 41–49.
|
[25] | Zhang DC, Han HY, Yin H, Li XJ, Yin Z, et al. (2011) Molecular phylogeny of Pamphagidae (Acridoidea, Orthoptera) from China based on mitochondrial cytochrome oxidase II sequence. Insect Science 18: 234–244.
|
[26] | Liu DF, Jiang GF, Shi H, Sun ZL, Huo GM (2005) Monophyly and the taxonomic status of subfamilies of the Catantopidae based on 16S rDNA sequences. Acta Entomol Sinica 48: 759–769.
|
[27] | Ma L, Huang Y (2006) Molecular phylogeny of some subfamilies of Catantopidae (Orthoptera: Caelifera: Acridoidea) in China based on partial sequence of mitochondrial COII gene. Acta Entomol Sinica 49: 982–990.
|
[28] | Lu RS, Huang Y, Zhou ZJ (2010) Phylogenetic analysis among the nine subfamilies in Catantopidae (Orthoptera, Acridoidea) in China inferred from cyt b, 16s rDNA and 28s rDNA sequences. Acta Zootax Sinica 35: 782–789.
|
[29] | Lu HM, Huang Y (2006) Phylogenetic relationship of 16 Oedipodidae species (Insecta: Orthoptera) based on the 16S rRNA gene sequences. Insect Science 13: 103–108.
|
[30] | Ding FM, Huang Y (2008) Molecular evolution and phylogenetic analysis of some species of Oedipodidae (Orthoptera: Caelifera) in China based on complete mitochondrial nad2 gene. Acta Entomol Sinica 51: 55–60.
|
[31] | Huo GM, Jiang GF, Sun ZL, Liu DF, Zhang YL, et al. (2007) Phylogenetic reconstruction of the family Acrypteridae (Orthoptera: Acridoidea) based on mitochondrial cytochrome b gene. J Genet Genom 34: 294–306.
|
[32] | Chapco W, Litzenberger G, Kuperus WR (2001) A molecular biogeographic analysis of the relationship between North American melanoploid grasshoppers and their Eurasian and South American relatives. Mol Phylogen Evol 18: 460–466.
|
[33] | Amédégnato C, Chapco W, Litzenberger G (2003) Out of South America? Additional evidence for a southern origin of melanopline grasshoppers. Mol Phylogen Evol 29: 115–119.
|
[34] | Litzenberger G, Chapco W (2003) The North American Melanoplinae (Orthoptera: Acrididae): a molecular phylogenetic study of their origins and taxonomic relationships. Ann Entomol Soc America 96: 491–497.
|
[35] | Chintauan-Marquier IC, Jordan S, Berthier P, Amédégnato C, Pompanon F (2011) Evolutionary history and taxonomy of a short-horned grasshopper subfamily: The Melanoplinae (Orthoptera: Acrididae). Mol Phylogen Evol 58: 22–32.
|
[36] | Litzenberger G, Chapco W (2001) Molecular phylogeny of selected Eurasian podismine grasshoppers (Orthoptera: Acrididae). Ann Entomol Soc America 94: 505–511.
|
[37] | Chapco W, Martel RKB, Kuperus WR (1997) Molecular phylogeny of North American band-winged grasshoppers (Orthoptera: Acrididae). Ann Entomol Soc America 90: 555–562.
|
[38] | Fries M, Chapco W, Contreras D (2007) A molecular phylogenetic analysis of the Oedipodinae and their intercontinental relationships. J Orthoptera Res 16: 115–125.
|
[39] | Chapco W, Contreras D (2011) Subfamilies Acridinae, Gomphocerinae and Oedipodinae are “fuzzy sets”: a proposal for a common African origin. J Orthoptera Res 20: 173–190.
|
[40] | Bugrov A, Novikova O, Mayorov V, Adkison L, Blinov A (2006) Molecular phylogeny of Palaearctic genera of Gomphocerinae grasshoppers (Orthoptera, Acrididae). System Entomol 31: 362–368.
|
[41] | Contreras D, Chapco W (2006) Molecular phylogenetic evidence for multiple dispersal events in gomphocerines grasshoppers. J Orthoptera Res 15: 91–98.
|
[42] | Rowell CHF, Flook PK (2004) A dated molecular phylogeny of the Proctolabinae (Orthoptera: Acrididae), especially the Lithoscirtae, and the evolution of their adaptive traits and present biogeography. J Orthoptera Res 13: 35–56.
|
[43] | Savolainen V, Cowan RS, Vogler AP, Roderick GK, Lane R (2005) Towards writing the encyclopaedia of life: an introduction to DNA barcoding. Philos Trans R Soc Lond, B, Biol Sci 360: 1805–1811.
|
[44] | Herbert PDN, Cywinska A, Ball SL, deWaard JR (2003a) Biological identifications through DNA barcodes. Proc R Soc Lond, B, Biol Sci 270: 313–321.
|
[45] | Hebert PDN, Ratnasingham S, deWaard JR (2003b) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond, B, Biol Sci (Suppl.) 270: S96–S99.
|
[46] | Baker AJ, Huynen LJ, Haddrath O, Millar CD, Lambert DM (2005) Reconstructing the tempo and mode of evolution in an extinct clade of birds with ancient DNA: The giant moas of New Zealand. Proc Natl Acad Sci USA 102: 8257–8262.
|
[47] | Lambert DM, Baker A, Huynen L, Haddrath O, Hebert PDN, et al. (2005) Is a large-scale DNA-based inventory of ancient life possible? J Hered 96: 279–284.
|
[48] | Campbell DC, Johnson PD, Williams JD, Rindsberg AK, Serb JM, et al. (2008) Identification of ‘extinct’ freshwater mussel species using DNA barcoding. Mol Ecol Res 8: 711–724.
|
[49] | Lawrence HA, Millar CD, Imber MJ, Crockett DE, Robins JH, et al. (2009) Molecular evidence for the identity of the Magenta petrel. Mol Ecol Res 9: 458–461.
|
[50] | Waugh J (2007) DNA barcoding in animal species: progress, potential and pitfalls. BioEssays 29: 189–197.
|
[51] | Hajibabaei M, Singer GAC, Hebert PDN, Hickey DA (2007) DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends Genet 23: 167–172.
|
[52] | Song H, Buhay JE, Whiting MF, Crandall KA (2008) Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proc Natl Acad Sci USA 105: 13486–13491.
|
[53] | Moulton MJ, Song H, Whiting MF (2010) Assessing the effects of primer specificity on eliminating numt coamplification in DNA barcoding: a case study from Orthoptera (Arthropoda: Insecta). Mol Ecol Resour 10: 615–627.
|
[54] | DeSalle R, Egan MG, Siddall M (2005) The unholy trinity: taxonomy, species delimitation and DNA barcoding. Philos Trans R Soc Lond, B, Biol Sci 360: 1905–1916.
|
[55] | Meier R, Zhang G, Ali F (2008) The use of mean instead of smallest interspecific distances exaggerates the size of the “barcoding gap” and leads to misidentification. Syst Biol 57: 809–813.
|
[56] | Austerlitz F, David O, Schaeffer B, Bleakley K, Olteanu M (2009) DNA barcode analysis: a comparison of phylogenetic and statistical classification methods. BMC Bioinformatics 10 (Suppl. 14) S10.
|
[57] | Monaghan MT, Wild R, Elliot M, Fujisawa T, Balke M (2009) Accelerated species inventory on Madagascar using coalescent based models of species delineation. Syst Biol 58: 298–311.
|
[58] | Virgilio M, Backeljau T, Nevado B, Meyer M De (2010) Comparative performances of DNA barcoding across insect orders. BMC Bioinformatics 11: 206.
|
[59] | Rosa ML, Fiannaca A, Rizzo R, Urso A (2013) Alignment-free analysis of barcode sequences by means of compression-based methods. BMC Bioinformatics 14 (Suppl7) S4.
|
[60] | Dai QY, Gao Q, Wu CS, Chesters D, Zhu CD (2012) Phylogenetic reconstruction and DNA barcoding for closely related pine moth species (Dendrolimus) in China with multiple gene markers. PlosONE 7: e32544.
|
[61] | Funk DJ, Omland KE (2003) Species-level paraphyly and polyphyly: Frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annu Rev Ecol Evol Syst 34: 397–423.
|
[62] | Monaghan MT, Balke M, Pons J, Vogler AP (2006) Beyond barcodes: complex DNA taxonomy of a south Pacific island radiation. Proc R Soc Lond B Biol Sci 273: 887–893.
|
[63] | deWaard JR, Landry JF, Schmidt BC, Derhousoff J, McLean JA, et al. (2009) In the dark in a large urban park: DNA barcodes illuminate cryptic and introduced moth species. Biodivers Conserv 18: 3825–3839.
|
[64] | Foottit RG, Maw HEL, Havill NP, Ahern RG, Montgomery ME (2009) DNA barcodes to identify species and explore diversity in the Adelgidae (Insecta: Hemiptera: Aphidoidea). Mol Ecol Resour 9 (Suppl. 1)188–195.
|
[65] | Rivera J, Currie DC (2009) Identification of Nearctic black flies using DNA barcodes (Diptera: Simuliidae). Mol Ecol Resour 9 (Suppl. 1)224–236.
|
[66] | Sheffield CS, Hebert PDN, Kevan PG, Packer L (2009) DNA barcoding a regional bee (Hymenoptera: Apoidea) fauna and its potential for ecological studies. Mol Ecol Resour 9 (Suppl. 1)196–207.
|
[67] | Pan CY, Hu J, Zhang X, Huang Y (2006) The DNA barcoding application of mtDNA COI gene in seven species of Catantopidae (Orthoptera). Entomotaxonomia 28: 103–110.
|
[68] | Trewick SA (2008) DNA Barcoding is not enough: mismatch of taxonomy and genealogy in New Zealand grasshoppers (Orthoptera: Acrididae). Cladistics 24: 240–254.
|
[69] | López H, Contreras-Díaz H, Oromí P, Juan C (2007) Delimiting species boundaries for endangered Canary Island grasshoppers based on DNA sequence data. Conserv Genet 8: 587–598.
|
[70] | Storozhenko SY (1983) Review of grasshoppers of the subfamily Catantopinae (Orthoptera, Acrididae) from the Sovjet Far East. In: Bodrova, Y.D., Soboleva, R.G., Meshcherkyakov, A.A. [eds] Systematics and ecological-faunistic reviews of the various orders of Insecta of the Far East. Academy of Sciences USSR Far-East Science Centre, Vladivostok, USSR, Rusian, 154 pp. 48–63. [In Russian]
|
[71] | Storozhenko SY (1993) To the knowledge of the tribe Melanoplini (Orthoptera, Acrididae, Catantopinae) of the Eastern Palearctica. Articulata 8: 1–22.
|
[72] | Uvarov BP (1931) Some Acrididae from South China. Lingnan Sci J 10: 217–221.
|
[73] | Tinkham ER (1936) Spathosternum sinense Uvarov considered to be a race of S. prasiniferum (Walker) (Orth.: Acrididae). Lingnan Sci J 15: 47–54 plate 6.
|
[74] | Grunshaw JP (1988) A taxonomic revision of the grasshopper genus Spathosternum (Orthoptera: Acrididae). J East Afr Nat Hist Soc Natl Mus 78: 1–21.
|
[75] | Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3: 294–297.
|
[76] | Tian YF, Huang G, Zheng ZM, Wei ZM (1999) A simple method for isolation of insect total DNA. J Shaanxi Norm Univ (Nat Sci Ed) 27: 82–84.
|
[77] | Staden R, Beal KF, Bonfield JK (2000) The Staden Package, 1998. Methods Mol Biol 132: 115–130.
|
[78] | Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X window interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882.
|
[79] | Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (and other methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.
|
[80] | Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.
|
[81] | Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817–818.
|
[82] | Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing evolutionary trees. Mol Biol Evol 4: 406–425.
|
[83] | Kumar S, Gadagkar SR (2000) Efficiency of the neighbor-joining method in reconstructing deep and shallow evolutionary relationships in large phylogenies. J Mol Evol 51: 544–553.
|
[84] | Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24: 1596–1599.
|
[85] | Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132: 619–633.
|
[86] | Templeton AR (2001) Using phylogeographic analyses of gene trees to test species status and processes. Mol Evol 10: 779–791.
|
[87] | Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9: 1657–1659.
|
[88] | Kimura M (1980) A simple method of estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120.
|
[89] | Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, 348 pp.
|
[90] | Meier R, Shiyang K, Vaidya G, Ng PKL (2006) DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. Syst Biol 55: 715–728.
|
[91] | Virgilio M, Jordaens K, Breman FC, Backeljau T, De Meyer M (2012) Identifying insects with incomplete DNA barcode libraries, African fruit flies (Diptera: Tephritidae) as a test case. PlosONE 7: e31581.
|
[92] | Zhang AB, Savolainen P (2008) BPSI2.0: A C/C++ interface program for species identification via DNA barcoding with a BP-neural network by calling the Matlab engine. Mol Ecol Resour 9: 104–106.
|
[93] | Zhang AB, Sikes DS, Muster C, Li SQ (2008) Inferring species membership via DNA barcoding with back-propagation neural networks. Syst Biol 57: 202–215.
|
[94] | Dearn JM (1978) Polymorphisms for wing length and colour pattern in the grasshopper Phaulacridium vittatum (Sj?st.). J Aust Entomol Soc 17: 135–137.
|
[95] | Gaines SB (1991) Body-size and wing-length variation among selected grasshoppers (Orthoptera: Acrididae) from Nebraska's Sandhills Grasslands. Trans Nebraska Acad Sci Affil Soc 18: 67–72.
|
[96] | Dearn JM (1981) Latitudinal cline in a colour pattern polymorphism in the Australian grasshopper Phaulacridium vittatum. Heredity 47: 111–119.
|
[97] | Hendrich L, Pons J, Ribera I, Balke M (2010) Mitochondrial cox1 sequence data reliably uncover patterns of insect diversity but suffer from high lineage-idiosyncratic error rates. PlosONE 5 (12) e14448.
|
[98] | Lis JA, Lis B (2011) Is accurate taxon identification important for molecular studies? Several cases of faux pas in pentatomoid bugs (Hemiptera: Heteroptera: Pentatomoidea). Zootaxa 2932: 47–50.
|
[99] | Luo AR, Zhang AB, Ho SYW, Xu W, Zhang Y, et al. (2011) Potential efficacy of mitochondrial genes for animal DNA barcoding: a case study using eutherian mammals. BMC Genomics 12: 84.
|
[100] | Burns JM, Janzen DH, Hajibabaei M, Hallwachs W, Hebert PDN (2007) DNA barcodes of closely related (but morphologically and ecologically distinct) species of skipper butterflies (Hesperiidae) can differ by only one to three nucleotides. J Lepid Soc 61: 138–153.
|
[101] | Smith MA, Woodley NE, Janzen DH, Hallwachs W, Hebert PDN (2006) DNA barcodes reveal cryptic host-specificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera: Tachinidae). Proc Natl Acad Sci USA 103: 3657–3662.
|
[102] | Yassin A, Amédégnato C, Cruaud C, Veuille M (2009) Molecular taxonomy and species delimitation in Andean Schistocerca (Orthoptera: Acrididae). Mol Phylogenet Evol 53: 404–411.
|
[103] | Dasmahapatra KK, Ellas M, Hill RI, Hoffmans JI, Mallet J (2010) Mitochondrial DNA barcoding detects some species that are real, and some that are not. Mol Ecol Resour 10: 264–273.
|
[104] | Moritz C, Cicero C (2004) DNA barcoding: promise and pitfalls. PLoS Biol 2 (10) e354, 1529–1531.
|
[105] | Zhang AB, He LJ, Crozier RH, Muster C, Zhu CD (2009) Estimating sample sizes for DNA barcoding. Mol Phylogenet Evol 54: 1035–1039.
|
[106] | Will KW, Rubinoff D (2004) Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification. Cladistics 20: 47–55.
|
[107] | Hickerson M, Meyer CP, Moritz C (2006) DNA barcoding will often fail to discover new animal species over broad parameter space. Syst Biol 55: 729–739.
|
[108] | Hurst GDD, Jiggins FM (2005) Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts. Proc R Soc Lond, B Biol Sci 272: 1525–1534.
|
[109] | Elias M, Hill RI, Willmott KR, Dasmahapatra KK, Brower AVZ, et al. (2007) Limited performance of DNA barcoding in a diverse community of tropical butterflies. Proc R Soc Lond, B, Biol Sci 274: 2881–2889.
|
[110] | Wiemers M, Fiedler K (2007) Does the DNA barcoding gap exist? A case study in blue butterflies (Lepidoptera: Lycaenidae). Front Zool 4: 8.
|
[111] | Chu KH, Xu M, Li CP (2009) Rapid DNA barcoding analysis of large data sets using the composition vector method. BMC Bioinformatics 10 (Suppl 14) S8.
|
[112] | Kuksa P, Pavlovic V (2009) Efficient alignment-free DNA barcode analytics. BMC Bioinformatics 10 (Suppl 14) S9.
|
[113] | Feng J, Hu Y, Wan P, Zhang AB, Zhao W (2010) New method for comparing DNA primary sequences based on a discrimination measure. J Theor Biol 266: 703–707.
|
[114] | Luo A, Qiao H, Zhang Y, Shi W, Ho SYW, et al. (2010) Performance of criteria for selecting evolutionary models in phylogenetics: a comprehensive study based on simulated data sets. BMC Evol Biol 10: 242.
|
[115] | Zhang AB, Feng J, Ward RD, Wan P, Gao Q, et al. (2012a) A new method for species identification via protein-coding and non-coding DNA barcodes by combining machine learning with bioinformatic methods. PlosONE 7 (2) e30986.
|
[116] | Zhang AB, Muster C, Liang HB, Zhu CD, Crozier R, et al. (2012b) A fuzzy-set-theory-based approach to analyze species membership in DNA barcoding. Mol Ecol 21: 1848–1863.
|
[117] | Puillandre N, Lambert A, Brouillet S, Achaz G (2012) ABGD, automatic barcode gap discovery for primary species delimitation. Mol Ecol 21: 1864–1877.
|